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Abstract

A research approach is presented that extends the separate solution methods of

stochastic and multi-objective optimization problems to one that would solve prob-

lems having both characteristics. Such problems are typically encountered when

one desires to optimize systems with multiple, often competing, objectives that do

not have a closed form representation and must be estimated, e.g., via simulation.

First, the class of mesh adaptive direct search (MADS) algorithms for nonlinearly

constrained optimization is extended to mixed variable problems, and convergence

to appropriately defined stationary points is proved. The resulting algorithm, MV-

MADS, is then extended to stochastic problems (MVMADS-RS), via a ranking and

selection procedure. Finally, a two-stage method is developed that combines the

generalized pattern search/ranking and selection (MGPS-RS) algorithms for single-

objective, mixed variable, stochastic problems with a multi-objective approach that

makes use of interactive techniques for the specification of aspiration and reservation

levels, scalarization functions, and multi-objective ranking and selection. This com-

bination is devised specifically so as to keep the desirable convergence properties of

MGPS-RS and MVMADS-RS, while extending to the multi-objective case. A conver-

gence analysis for the general class of algorithms establishes almost sure convergence

of an iteration subsequence to stationary points appropriately defined in the mixed-

variable domain. Seven specific instances of the new algorithm are implemented

and tested on 11 multi-objective test problems from the literature and an engineering

design problem.
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Search Techniques for Multi-Objective Optimization of

Mixed-Variable Systems Having Stochastic Responses

I. Introduction

1.1 Problem Setting

With the advent of advanced numerical techniques for analyzing complex engi-

neering problems, engineers are seeking to integrate such methods into smart design

processes. As a result, optimization techniques have become increasingly important

in engineering design problems, e.g., in the area of conceptual aircraft design [99].

However, complications arise when applying traditional optimization techniques to

engineering design problems like aircraft design. Such design problems typically

contain multiple, often competing, objectives [35, 77, 82, 90]. Additionally, these

objectives are often subject to measurement error or must be estimated by complex

simulations [35,36,81,91]. Finally, engineering design problems often contain discrete

or categorical design variables [82]. Thus, multi-objective and stochastic optimiza-

tion techniques, applicable to both continuous and discrete decision variables, must

be considered. However, significant challenges exist for these types of optimization

problems.

1.1.1 Modeling Uncertainty. Given a general constrained nonlinear opti-

mization problem, formulated as

minF (x)

subject to

gi(x) ≤ 0, i = 1, 2, . . . ,M ,

where x ∈ Rn represents the controllable design variables, F : Rn → R, and the

constraints gi : Rn → R, i = 1, 2, . . . ,M , define the feasible region Ω ⊆ Rn, a myriad
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of archetypal solution methods are available to the analyst (e.g., Newton’s method,

steepest descent, etc.) [162]. But if one or more elements of the optimization problem

contain a random component, what changes to classical optimization are required in

order to allow reasonably efficient optimization of this random system? The answer

to this question involves the class of solution methods called stochastic optimization

which, as the name implies, deals with systems in which one or more of the problem

components–objective function(s) and/or constraints–contain a random element.

Stochastic optimization is related to traditional statistical modeling, in that one seeks

to model a function by repeated sampling of a population; however, in this case, the

function is dependent not only on a random element, but also on controllable design

variables.

A general stochastic optimization problem can be written as

minF (x, ω) (1.2a)

subject to

gi(x, ω) ≤ 0, i = 1, 2, . . . ,M (1.2b)

where x ∈ Rn1 and ω ∈ Rn2 represent the controllable design variables and random

(uncontrollable environmental) variables, respectively, and the constraint set gi(x, ω),

i = 1, 2, . . . ,M defines some feasible region Ω ⊆ (Rn1 ×Rn2). Thus, the task becomes

finding x so that Equation (1.2a) is minimized in a certain sense over all feasible x and

all possible values of ω. Notions of feasibility and optimality for stochastic systems

are highly dependent on the specific problem under study and must be precisely

defined [48].

This research focuses on problems in which all constraints are deterministic and

the objective function cannot be explicitly evaluated and must be estimated through

some kind of simulation. Here simulation refers to a generic numerical method by

which input (control) variables are used to produce an output measure of interest

(response) [53, 138]. Therefore, in this simulation-based optimization, the observed

2



system response is a function of both the design variables and the random error

associated with the simulation model.

For simulation-based optimization, the general stochastic objective function

given in (1.2a) is typically replaced by its mathematical expectation E[·] [48]. With

this convention and the assumption that the observed response is an unbiased approx-

imation of the true system response, the observed response F can be represented by

F (x, ω) = f(x) + εω(x) where f is the deterministic, “true” objective function, and

εω : Rn1 → R is the random error function associated with the simulation (i.e., the

random element of F due to the uncontrollable environmental variables ω) such that

E[εω(x)] = 0. Thus, the problem is reformulated as

minF (x, ω) u E[F (x)] = E[f(x) + εω(x)]

subject to

gi(x) ≤ 0, i = 1, 2, . . . ,M .

1.1.2 Optimizing Multiple Objectives. In addition to the complexity of

design optimization problems due to the stochastic element, often there exists no

single criterion for choosing the best solution. In fact, even the notion of “best” can

be unclear when multiple objectives are present. In many cases, it can be shown that

improvement to one objective actually degrades the performance of another. Such

objectives are called competing objectives and are the motivation for the study of

multi-objective optimization as a separate discipline; if the objectives did not compete,

they could be collapsed into a single objective and classic solution techniques would

apply [1]. The multi-objective optimization problem,

minE[F (x)] = E[f(x) + εω(x)] (1.4a)

subject to

x ∈ Ω = {x ∈ Rn : gi(x) ≤ 0, i = 1, 2, . . . ,M}, (1.4b)

3



where F : Rn → RJ , is that of finding a solution x∗ ∈ Ω that optimizes the set of

objectives F = (F1, F2, . . . , FJ) in the sense that no other point y ∈ Ω yields a better

function value in all the objectives [83]. The point x∗ is said to be non-dominated,

efficient or optimal in the Pareto sense [54]. Further definitions associated with

Pareto optimality follow.

1.1.2.1 Definitions Associated with Pareto Optimality. When optimiz-

ing over multiple objectives, the space containing the decision variables is referred to

as the decision space, and the space containing their associated images (i.e., objective

function values) is referred to as the objective space. Two particular points in the

objective space, which are often referenced in multi-objective optimization methods,

are the utopia point (or ideal point) and nadir point. These are formally defined in

Definitions 1.1.1 and 1.1.2, respectively [46], and are depicted in Figure 1.1 by points

U and N, respectively.

Definition 1.1.1. The point yU = (yU1 , . . . , y
U
J ) given by y

U
k := min

x∈Ω
Fk(x) is called the

utopia or ideal point of the multi-objective optimization problemmin
x∈Ω
(F1(x), . . . , FJ(x)).

Definition 1.1.2. The point yN = (yN1 , . . . , y
N
J ) given by yNk := max

x∈Ω
Fk(x) is called

the nadir point of the multi-objective optimization problem min
x∈Ω
(F1(x), . . . , FJ(x)).

U

N

Objective 1

O
bj

ec
tiv

e 
2 Pareto Front

Figure 1.1: Graphical Depiction of the Objective Space (Convex Pareto Front)
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There are several equivalent definitions of Pareto optimal solutions–also called non-

dominated or efficient solutions–in the literature. For the purpose of this research,

the definition presented as Definition 1.1.3 is used [46].

Definition 1.1.3. A solution x∗ ∈ Ω to the multi-objective optimization problem,

given in Equations (1.4a-1.4b), is said to be Pareto optimal if there is no x ∈ Ω

such that Fk(x) ≤ Fk(x
∗) for all k = 1, 2, . . . , J with Fi(x) < Fi(x

∗) for some i ∈

{1, 2, . . . , J}.

Definition 1.1.4. A solution x∗ ∈ Ω to the multi-objective optimization problem,

given in Equations (1.4a-1.4b), is said to be a Pareto stationary point or to satisfy

first-order necessary conditions for Pareto optimality if there exists no feasible direc-

tion d ∈ Rn such that ∇Fk(x
∗)Td ≤ 0 for all k = 1, 2, . . . , J and ∇Fi(x

∗)Td < 0 for

some i ∈ {1, 2, . . . , J}.

In this research, the set of Pareto optimal solutions is referred to as the Pareto

optimal set or simply the Pareto set. The image of the Pareto set is referred to as

the Pareto Frontier or Pareto Front. A graphical example of a convex Pareto front is

shown in Figure 1.1; a non-convex Pareto front is shown in Figure 1.2. If the Pareto

set (or corresponding Pareto front) results from a solution algorithm and is not exact,

it is referred to as the approximate (or experimental) Pareto set or approximate (or

experimental) Pareto front, respectively.

1.1.3 Optimizing Over a Discrete Decision Space. The complexity of these

problems is further increased when the decision space includes variables that are either

discrete (e.g., integer-valued) or categorical. Categorical variables are those which

can only take on values from a predetermined list, and may not even have an ordinal

relationship to each other. However, since categorical variables can be mapped easily

to discrete-numeric values, these two types of variables will be grouped together and

considered as a single variable type in this research.

Discrete variables are common in engineering design problems. For example,

in the design of aircraft, the number of engines is integer-valued and the engine type

5



U

N

Pareto Front

Objective 1

O
bj

ec
tiv

e 
2

Figure 1.2: Graphical Depiction of the Objective Space (Non-Convex Pareto Front)

(turboprop, turbofan, etc.) and engine placement (wing, aft, or combination) [126]

are categorical. Other discrete variables may include airfoil type, wing configuration

(orientation and location of the lifting surfaces of the aircraft [8, 127]), and cabin

layout (number of aisles, location of lavatories, etc. [127]). The class of optimization

problems that may contain continuous, discrete-numeric, and categorical variables is

known as mixed variable programming (MVP) [9,138].

To model mixed variables, the decision space is partitioned into continuous and

discrete domains, Ωc and Ωd, respectively, where the discrete variables may include

categorical variables. Without loss of generality, discrete variables can be mapped

to the integers, so that the discrete part of the decision space can be represented as a

subset of the integers, i.e., Ωd ⊆ Znd , where nd is the dimension of the discrete space.

A solution x ∈ Ω is denoted by x = (xc, xd), where xc ∈ Rnc and xd ∈ Znd .

1.1.4 Problem Formulation. The inclusion of stochastic and multi-objective

elements to the classic optimization problem formulation yields the following restated

6



problem:

minE[F (x)] = E[f(x) + εω(x)] (1.5a)

subject to

gi(x) ≤ 0, i = 1, 2, . . . ,M , (1.5b)

where x ∈ (Rnc × Znd) and F : (Rnc × Znd)→ RJ .

1.2 Requirements Analysis and Research Outline

Because engineering design optimization and many other practical optimization

applications are generally multi-objective and may contain both stochastic elements

and mixed variables, an optimization method capable of handling the following four

characteristics is desired.

1. Stochastic. Stochastic optimization algorithms should be able to approxi-

mate the Pareto frontier when starting from an arbitrary point for problems in

which function evaluations are known to contain measurement error or must be

estimated, e.g., via simulation. Further, such an algorithm should be provably

convergent to Pareto solutions, thus guaranteeing that a representation of the

frontier in a region of interest can be found. However, convergence for stochastic

methods is usually specified as “almost surely” or “with probability 1” [137].

2. Multi-Objective. Ideally, algorithms should be capable of finding a rea-

sonably accurate approximation of the Pareto frontier in cases for which no

preference information is explicitly known or even exists. However, in many

engineering design problems, some information about desired performance goals

(called aspiration levels), as well as minimum acceptable performance levels

(called reservation levels), may in fact exist, and can be used to determine a

region of interest in which to estimate the Pareto front. This type of preference

information is assumed to exist.

7



3. General Purpose. An algorithm should be applicable to a wide range of

problems, with any combination of variable types. An algorithm should also be

indifferent or robust to the source of the function evaluations; i.e., the algorithm

is able to treat the objective and constraint functions as “black boxes”.

4. Efficient. To be practical and useful for real design problems, an algorithm

should perform well with respect to the number of function evaluations required.

In many design applications, such function evaluations are obtained via costly

simulation runs and should therefore be used as parsimoniously as possible.

1.2.1 Problem Statement. There exists no provably convergent, general-

purpose class of methods for solving multi-objective, stochastic optimization problems

that apply to the mixed-variable case and are indifferent to the source of function

evaluations, as well as computationally efficient algorithmic implementations of these

methods.

1.2.2 Research Objectives. The purpose of this research is to develop a

provably convergent, general-purpose class of methods for solving multi-objective,

stochastic optimization problems that apply to the mixed-variable case and are in-

different to the source of function evaluations. Each of these requirements for the

solution method presents specific challenges in the optimization process. In response

to these unique challenges, a new method is introduced, which extends the applica-

bility of generalized pattern search with ranking and selection for linearly constrained

problems [138] and mesh adaptive direct search (MADS) for nonlinearly constrained

problems [6] to multi-objective problems through the use of interactive specification

of aspiration/reservation levels [62], scalarization functions [101], and multi-objective

ranking and selection methods [85]. Specific goals of the research are:

1. Determine an appropriate amalgamation of stochastic and multi-objective meth-

ods to be extended to the multi-objective, stochastic case. Investigate tradeoffs
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among the desirable characteristics of proven convergence properties, simplicity,

computational efficiency, and processing time.

2. Extend previous methods to address the mixed-variable, multi-objective, stochas-

tic class of problems. Examine and prove convergence properties of the new

solution methodology.

3. Develop specific algorithmic implementations of the new solution methodology.

Test the implementations on a range of appropriate test problems and evaluate

computational efficiency. The following sub-objectives summarize the empirical

results pursued.

(a) Test the algorithm on a set of test problems with known solutions. In order

to evaluate the algorithm’s use on stochastic problems, the test problems

are modified to introduce random noise into the objective function evalua-

tions. Compare the solution quality and the computational efficiency to the

published results of other solution methods. Because no methods currently

exist for the mixed-variable, multi-objective, stochastic class of problems,

compare the new algorithm to those used for deterministic, multi-objective

problems and infer a quality evaluation of computational speed and accu-

racy.

(b) Test the algorithm on an engineering design problem.

4. Study appropriate algorithm termination criteria. Develop heuristic stopping

criteria based on differences in competing responses compared to variations in

the responses and the practically required tolerance of the solution.

1.3 Overview

This dissertation is organized as follows. Chapter II reviews several existing

solution methods for both stochastic and multi-objective problems, as well as the

few that exist for problems with both characteristics. Chapter III presents specific

elements of the proposed methodology, an outline of the proposed methodology, and

9



theoretical convergence results. Chapter IV provides algorithmic implementations

of the solution methodology. Chapter V presents computational results of these

implementations tested against multi-objective test problems with known results, as

well as an engineering design optimization problem. Finally, Chapter VI summarizes

the achievements of this research and suggests areas for further research.
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II. Literature Review

As illustrated in Figure 2.1, optimization is a diverse field with many branches. Prob-

ably the most well known and longest studied problem is that of single objective,

deterministic optimization. Examples of traditional optimization techniques include

Dantzig’s simplex method for linear programs [162], branch and bound techniques

and decomposition like Sweeney-Murphy decomposition for integer programs [142]

and Benders decomposition for large-scale problems [21], nonlinear programming

techniques like sequential quadratic programming [73], and heuristic methods like

evolutionary algorithms. However, though applicable to many types of problems,

other methods are needed for problems with more than one objective or for systems

having stochastic responses. Thus, the disciplines of stochastic optimization and

multi-objective optimization have been developed, but, for the most part, separately.

The following sections provide an overview of stochastic and multi-objective optimiza-

tion methods, as well as methods that have been used for stochastic multi-objective

problems with continuous variables.

2.1 Methods for Stochastic Optimization

Stochastic optimization problems are those in which the objective or constraint

functions contain a random element, either due to random noise in the function eval-

uations or random algorithm choices (such as the search direction) [134]. Stochastic

optimization problems can be further delineated by the nature of solution required.

Parametric optimization is used to find values for a set of parameters to optimize

a performance measure, e.g., cost, reliability, or weight. In contrast, control opti-

mization seeks to find a set of actions to be taken in different states a system can

visit in order to optimize a performance measure [61]. A classic example of this

type of problem is the Markov decision problem, which is typically solved using dy-

namic programming. Various solution techniques for both types of problems are

shown in Figure 2.1. (Note that when multiple objectives can be aggregated in some

way–see Section 2.2.1–single objective control optimization techniques can be used
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(a) Optimization Overview

(b) Multi-Objective Parametric Optimization of Stochastic Systems

Figure 2.1: Optimization Lineage
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for multi-objective problems.) Though this research addresses the field of paramet-

ric optimization, a brief review of control optimization is presented for the sake of

completeness before presenting methods of parametric optimization.

2.1.1 Solution Methods for Control Optimization.

2.1.1.1 Dynamic Programming. Developed in the late 1950’s by Bell-

man and Howard [20, 69], dynamic programming has a considerably lower computa-

tional burden than exhaustive enumeration. It has continued to evolve over the last

half century and is now considered to be the main pillar of stochastic control opti-

mization. Dynamic programming assigns a so-called value function to the process

in each state. Then the Bellman equations for value iteration–recursion equations

for expected reward based on the probability of a state and the value associated with

that state [155]– are used to find the optimal set of actions to move the process along

the best path. Simulation can be used to estimate the value function at each state.

If the control optimization problem consists of a Markov or semi-Markov [20, 69] de-

cision process, then dynamic programming is guaranteed to converge to an optimal

solution.

2.1.1.2 Reinforcement Learning. A severe drawback to dynamic pro-

gramming is that the transition probabilities between states must be known in order to

use the Bellman equations, which may be difficult to obtain for real-world problems.

Overcoming this problem may require either simulation to approximate transition

probabilities or simply using a method that does not require them. Since simula-

tion is somewhat inefficient, the latter choice is generally preferred. Reinforcement

learning is one such method [61].

Reinforcement learning was developed in the artificial intelligence community

and is known as a “machine learning” technique. Though only guaranteed to find

near-optimal solutions, it is still a powerful solution method because it is based on

the Markov decision model. In this approach, the decision maker is viewed as a
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learning agent, who receives feedback from the environment based on decisions the

agent makes. Good decisions produce reinforcement by increasing the probability

the agent will take that action, but bad ones result in punishment by decreasing

this probability. In this way, the agent learns by trial and error in a simulated

environment [61]. Specific reinforcement learning methods include adaptive critic

methods [15], Q-learning [61,151], and temporal difference learning [134].

2.1.2 Methods for Stochastic Parametric Optimization. Consider the prob-

lem [61],

min f(x) =

Z ∞

−∞
[x− 5]−0.3p(x)dx,

where p is a probability density function (pdf) of the random variable x, and the

objective function f is the expected value of x. Since the pdf is known and f

is known and has closed form, this problem can be solved with standard nonlinear

programming techniques such as steepest descent, gradient projection methods for

constrained problems, and linearization methods like Frank-Wolfe [52, 102, 107]. If

the closed form of the objective function is not known or has no closed form, or if

it is difficult to obtain values for the pdf, other methods must be used. Types of

solution methods that estimate the value of the objective function using simulation are

aptly called simulation-based optimization. Simulation, though not an optimization

technique per se, can be used in conjunction with numerical optimization methods

in order to solve difficult parametric optimization problems [61]. Sriver provides an

excellent overview of simulation-based optimization techniques [137]. These (and

additional) methods are discussed in Sections 2.1.2.1—2.1.2.3.

2.1.2.1 Response Surface Methodology. Response surface methodology

(RSM), developed by Box et al. [26,27,104,105], is one of the oldest simulation-based

methods of parametric optimization. It is based on the idea that an approximate

form of the objective function can be obtained by simulating the system at a finite

number of carefully chosen points in the decision space. Traditionally, RSM has
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used polynomial regression over the sampled points to find an approximate form of

the objective function; however, alternate forms have been proposed such as kriging,

neuro-response surfaces, multivariate adaptive regression splines (MARS), and radial

basis functions [61, 137, 138]. A survey of such methods can be found in [75]. It is

decidedly robust and often works well where other methods fail [61]; however, it only

converges to the optimal value of the model, not that of the original problem.

2.1.2.2 Continuous Optimization. Continuous parametric optimiza-

tion refers simply to optimization problems with continuous variables. This class of

problems has two general types of solution methods: those that use the gradient of

the objective function and those that do not [61,162].

Gradient-Based Methods. Stochastic gradient-based methods

include gradient descent and simultaneous perturbation. First, consider gradient

descent (also called the method of steepest descent or finite difference stochastic ap-

proximation). A stochastic version of one-dimensional gradient descent for finding

the root of a one-dimensional unconstrained noisy function was first introduced by

Robbins and Monro in the 1950s [123]. It was extended shortly thereafter by Keifer

and Wolfowitz [76] to that of using central finite differences to estimate the derivative,

and later by Blum to include the multivariate case [23]. It has been the most popular

and widely used method for simulation-based optimization [143].

At each iteration, the partial derivatives are estimated, the new search direction

is chosen as the negative of the approximated gradient, and the algorithm moves a

small step in this direction. This repeats until the estimate of the gradient is close

to zero (within a tolerance).

The gradient descent method, which is defined by the iteration,

xk+1 = xk − μ∇f(xk), k = 1, 2, . . . , (2.1)
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is guaranteed to converge to a stationary point if the function f is convex, continu-

ously differentiable, and the step size μ is sufficiently small [61]. When the closed

form of the objective function is not known, the “sufficiently small” step size must

be found by experimentation. Additionally, 2n function evaluations are required per

iteration to estimate the gradient in Equation (2.1), and since the function evalua-

tions are generated via simulation, multiple replications may be required per function

evaluation. Thus, as the number of decision variables grows, the number of (possibly

time-consuming) simulation runs grows dramatically [61,134].

Spall [134] developed simultaneous perturbation, a method in which the gradient

can be estimated with only two function evaluations, regardless of the number of

variables. The objective function is evaluated at the current iterate and at another

perturbed point a small distance from the current iterate in order to approximate

partial derivatives. The key is that the perturbed point is shifted (randomly) in all

dimensions at once. This method is not only efficient, but also has been shown to

converge with probability 1 to a stationary point of the objective function [61].

Gradient-Free Methods. The second type of continuous opti-

mization solution methods do not require gradients, e.g., direct search methods [137].

These methods evolved from early efforts to optimize stochastic systems. In the

1950s, Box proposed a method for improving industrial efficiency known as evolu-

tionary operation (EVOP) [24] in which estimation of regression models was replaced

by a relatively simpler method of inspecting experimental data according to patterns

in the experimental design. Later, an automated version of EVOP with updated

experimental designs (simplex vice factorial) was proposed by Spendley, Hext, and

Himsworth [135].

During the 1960s, several more direct search methods were developed includ-

ing the search method of Hooke and Jeeves [67] and the Nelder-Mead method [109].

The Nelder-Mead method, also known as the downhill simplex method or flexible

polygon search, is an extension of the method developed by Spendley, Hext, and
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Himsworth [135]. These two methods are perhaps the most frequently used direct

search methods and have been widely used on real-world problems with much success.

At the time, they were generally regarded as heuristics because they were thought to

not possess satisfactory convergence properties in high dimensions [61] or a general

convergence theory in the stochastic setting [137]. More recently, Torczon proved

convergence for a more general class of pattern search methods, which includes the

direct search method of Hooke and Jeeves but not the Nelder-Mead method [146].

(Torczon also states that the simplex method of Spendley, Hext, and Himsworth can

be shown to converge with some modification to the original algorithm, but only under

the additional assumption that f is convex [146].) Later, McKinnon [100] showed ex-

amples in which Nelder-Mead converges to nonstationary points. These examples are

for well-behaved functions and illustrate the limitations on the convergence properties

of Nelder-Mead [100]. A survey of pattern search methods can be found in [80].

The Nelder-Mead method starts with a feasible set of solutions (dimension n+1)

whose vertices define a “simplex” or “polygon”. At each iteration, the worst solution

is dropped from the simplex in favor of a good one. During the search, the geometry

of the simplex is changed by expansion, reflection, contraction, or shrinking operations

based on the relative rank of the point added at each iteration [109]. Improvements

and extension to stochastic problems of this method include work by Tomick, Arnold,

and Barton to determine rules for estimating the number of replications required at

each simplex design point [145]; a variant of the method proposed by Barton and Ivy

that reduces the risk of false convergence [16]; and work by Humphrey and Wilson

that addresses sensitivity to starting values, premature termination, robustness, and

computational efficiency [71,72].

The Hooke-Jeeves pattern search method involves two types of movement. First,

a search area is determined via exploratory moves from the starting point. A pattern

of points is then defined in this area and is explored by changing each parameter in

turn. The pattern is then shifted to a new region via the exploratory moves [140].

This method has been used in conjunction with two-stage ranking and selection pro-

17



cedures [111] as well as inside the optimization modules of the GASP and SLAM

simulation languages [113, 114]. Little research was done on direct search methods

from the 1960s until the introduction and convergence analysis of generalized pattern

search (GPS) for unconstrained optimization problems by Torczon in the 1990s [146].

GPS is discussed in more detail in Chapter III.

2.1.2.3 Discrete Optimization. Discrete optimization problems have

gaps in the domain of the objective function, so derivatives may be of little use. If

the solution space is sufficiently small, then the problem can be solved by exhaustive

search of the solution space. However, as problem dimension increases, exhaustive

search quickly becomes impractical. Additionally, even when the solution space is

relatively small, a more efficient method for comparing and ranking the best solutions

is preferred. [61]

Ranking and Selection. The ranking and selection techniques

of Goldsman and Nelson [60] or Hochberg and Tamhane [66] are examples more

efficient methods. Ranking and selection methods are statistical methods for selecting

the best solution from among a set of competing candidates. These methods are

theoretically sound, well tested, and are typically used on systems with up to twenty

candidate solutions, although recent work shows that they can be used on much

larger problems [61]. Other examples of ranking and selection algorithms are the

Rinott method and the Kim-Nelson method, a more recent, and possibly more efficient

algorithm [61].

Meta-heuristics. When several hundred or thousand candidate

solutions exist, ranking and selection methods cannot be used directly. They can,

however, be used inside of a meta-heuristic to increase the power of the ranking and

selection method (by increasing the number of alternatives that can be examined)

and to make the results of the meta-heuristic more reliable. Meta-heuristics focus

on finding “good” solutions to large-scale (possibly otherwise intractable) discrete
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optimization problems. They do not require a closed form of the objective function,

relying only on value of the function at various points which can be estimated via

simulation. While they are not guaranteed to produce optimal solutions, they often

produce good solutions in a reasonable amount of time and are included in some com-

mercial simulation software packages. Examples of meta-heuristics include simulated

annealing, genetic algorithms, tabu search, scatter search, and the learning automata

search technique [61,134]. A brief description of each method follows.

Simulated annealing is an adaptive search method that “exploits the analogy

between the way in which metal cools and then freezes into a minimum energy crys-

talline structure and the search for a minimum in a more general system” [147]. In

simulated annealing, search directions (or points, in the discrete case) are randomly

generated. If a point with a lower function value is found, then it becomes the new

iterate. Otherwise, it may still randomly accept the point with nonzero probability,

based on the function values and a control parameter. While it may seem odd to

accept a worse point, doing so can help avoid local (non-global) minima [128,134,147].

Genetic algorithms, one class of evolutionary algorithms, mirror the evolutionary

processes found in nature. In nature, each species searches for beneficial adaptation

in a changing environment. As species evolve, new attributes are encoded in the

chromosomes of its members. Though this information can change by mutation,

most change occurs due to the combination and exchange of genetic attributes during

breeding. Analogously, genetic algorithms code complicated non-biological structures

as simple bit strings and improve the structures by simple transformations of the

strings. They are unique in that they work on encoded decision variables rather

than the variables themselves, and search from one population to another rather than

from one individual to another [147]. Thus, each new population has a good chance

of inheriting the best characteristics of the previous one [134]. Genetic algorithms

are generally effective, robust, computationally simple [128], and easy to parallelize

[134, 147]. However, they are often very expensive, in that they generally require

many function evaluations.
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Tabu search, proposed by Glover in 1977, is described as “a meta-heuristic

superimposed on another heuristic” [57]. The crux of tabu search is to avoid getting

caught in cycles or local optima by forbidding or penalizing moves which steer the

solution towards regions of solution space already visited. As with other meta-

heuristics, it is partially motivated by an observation of nature, human nature in

this case. Human behavior appears to operate with a random element that leads

to inconsistent behavior in similar situations. It is this inconsistent behavior or

deviation from a charted course that proves to be a source of gain. Tabu search

works in this way except that it does not randomly choose new courses. Instead it

only accepts a “poor” course if it is the only way to avoid a path previously studied.

In this way it can potentially escape the trap of local minima [128,131].

Scatter search is a population-based method originally proposed by Glover in

the 1960s. Unlike other evolutionary algorithms, it does not search in a completely

random fashion. It instead uses strategies for combining effective solution vectors

through the use of an adaptive memory similar to that used by tabu search [18, 19,

58,103].

The learning automata search technique (LAST) is based on game theory and

artificial intelligence. Unlike many other meta-heuristics, LAST is not a local search

technique. Instead, it jumps around the solution space while keeping the best point.

Initially, it jumps randomly, but as the algorithm progresses, it begins to “zero in” on

its perceived best solution by updating the probabilities associated with the random

jump. Initially, the algorithm has an equal probability of choosing various points

to evaluate. At each iteration, a point is selected based on probabilities that are

stored with each previously evaluated point, and evaluated. If the selected point has

a comparatively low objective function value, then the corresponding probability is

rewarded with an increase. Otherwise, it is punished with a decrease. In this way

the algorithm “gets smarter” [61,164]. LAST has also been combined with a genetic

algorithm to speed solution convergence properties and increase its chance of escaping

local optima [70].
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2.1.2.4 Mixed Variable Solution Spaces. Often in real-world problems

the solution space is not neatly defined as either discrete or continuous, but rather a

combination of both types, i.e., it is a problem in which some decision variables are

discrete and some are continuous. Historically, methods to tackle this problem have

included 1) discretize the solution space of the continuous functions using a reasonably

fine grid, 2) treat the discrete variables as continuous and use continuous optimization

algorithms with rounding, or 3) use branch-and-bound techniques branching only on

the discrete variables. Naturally, these methods have drawbacks. With the first

option, the design space can become quite large depending on the size of the grid,

while with the second, treating discrete variables as continuous is known to have

problems in practice, often leading to sub-optimal or infeasible solutions. Finally,

branch-and-bound techniques require relaxation of integrality constraints [162] and

so are not applicable to problems involving categorical variables. Solution methods

for this type of problem include pattern search methods for solving deterministic

mixed variable problems introduced by Audet and Dennis [9]. Recent work by Sriver

et al. [138] extended the work of Audet and Dennis to the stochastic case using a

combination of pattern search and ranking and selection. This method (MGPS-RS)

is discussed further in Chapter III. A more general framework for treating mixed

variable problems (without the specifying the approach for handling the continuous

variables) was introduced by Lucidi et al. for both the derivative-free case [95] and

the case in which derivatives are employed [94].

2.2 Methods for Multi-objective Optimization

There are many methods available to solve multi-objective optimization prob-

lems. These methods can be sorted into three families: a priori methods, progressive

methods, and a posteriori methods. With a priori methods, the decision maker de-

fines the trade-off to be applied (preferences) before running the optimization method.

With progressive methods, the decision maker improves the trade-off as the method

progresses. And finally, in a posteriori methods, the decision maker chooses a solution
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after examining all those obtained by the optimization method. Not all methods fall

neatly into one family. For example, a priori preferences can be computed at random

and then a large number of solutions can be presented to the decision maker to choose

the final solution.

Most multi-objective optimization methods can also be divided into five sets:

scalar methods, interactive methods, fuzzy methods, meta-heuristic methods, and

decision aid methods, as shown in Figure 2.1(a). Again, not all methods can be

pigeon-holed into a single set. For example, the method of interactive specification of

aspiration/reservation levels, discussed extensively in Chapter III, is a scalar method

that is also interactive. Though not absolute, the sets do provide a useful way of

categorizing and describing most methods. A description and examples of each set

of methods follows. Additional information on multi-objective solution methods can

be found in [33].

2.2.1 Scalar Methods. Scalar methods attempt to transform the multi-

objective problem into one with a single objective, so that standard optimization

techniques can be applied. Several methods are presented.

2.2.1.1 Weighted Sum of the Objective Functions. This approach is the

most obvious of the solution methods and is sometimes called the “näıve approach”.

It simply constructs the single objective as a weighted sum of the objective functions.

The problem can be solved repeatedly using different different weights to generate an

approximation of the Pareto front. This was the first solution method used on multi-

objective problems; though it is quite efficient, it may perform poorly on problems

with nonconvex Pareto fronts. If the Pareto front is nonconvex, not all solutions on

the tradeoff surface can be found [33,37,128]. For example, the Pareto front depicted

in Figure 1.2 is an extreme case where only the two endpoints of the front can be

found with this type of method, regardless of the weights [32].
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2.2.1.2 Keeney-Raiffa Method. The Keeney-Raiffa method forms a

single objective function as the product of the objective functions. The new objective

function is called the Keeney-Raiffa utility function and is used in multi-attribute

utility theory, which comes from the decision sciences and deals with the properties

of a utility function and ways to create it [33].

2.2.1.3 Distance-to-a-Reference Point Method. This method also

transforms the objective functions into one by calculating the distance to a refer-

ence point, such as the utopia point, using an appropriate distance metric (e.g., the

Euclidean norm). A Pareto optimal point is then found by minimizing the distance

to the reference point. The success of this method is heavily dependent on the choice

of a reference point, but it is often able to find solutions hidden in concavities of the

Pareto front [33].

2.2.1.4 Compromise Method. While the previous three methods merge

several objective functions into a single one, the compromise method does so with

additional constraints. This is done by preserving the highest priority objective

function (as specified by the decision maker) and transforming all others into con-

straints. Though the compromise method is known to consume large amounts of

computing time and the programming of the algorithm can be difficult with many

objective functions, the relative simplicity of its equations has made it popular [33].

2.2.1.5 Normal Boundary Intersection Method. The normal bound-

ary intersction (NBI) approach of Das and Dennis [38] produces an approximation

of the Pareto front by solving a series of single-objective optimization problems, in

which an additional linear equality constraint based on previously determined objec-

tive function values is added [12]. This results in a Pareto solution that lies on the

intersection of the constraint and the Pareto front. It is based on the observation

that the intersection of the boundary of the set of feasible solutions (or image of the

feasible region) with a normal pointing towards the origin and emanating from any
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point in the convex hull of individual minima (convex combination of the objectives)

is a point on the portion of the boundary which contains efficient points. NBI has

been shown to provide an evenly distributed set of points on the Pareto front [37].

2.2.1.6 Hybrid Methods. Hybrid methods combine several methods

into new ones. The best known hybrid method is the Corley Method, which con-

verts some objectives to constraints and then applies a weighted-sum-of-the-objective-

functions to the remaining objective functions. This method is efficient in solving var-

ious kinds of optimization problems, with both convex and nonconvex Pareto fronts,

but has twice the number of parameters to “tune”(e.g., weights, which objectives to

convert to constraints, and in what order) [33].

2.2.1.7 Goal Attainment Method. The goal attainment method is rel-

atively simple and is able to determine points on nonconvex regions of the Pareto

front (see Figure 1.1). The methods consists of choosing an initial vector of decision-

maker-specified ideal function values, choosing a search direction (essentially weights

or relative importance of the objectives), and minimizing a scalar coefficient which

represents the gap between the two vectors. The main advantage of this method

is its efficiency with respect to nonconvex Pareto fronts; however, some shapes of

Pareto fronts exist for which the success of the method depends greatly on the choice

of the search direction [33]. An example is the method of interactive specification of

aspiration/reservation levels, mentioned in Section 2.2.2.6, which is an interactive/-

goal attainment method that uses aspiration levels (decision-maker-specified ideal or

“hoped for”) as the reference point. The search direction is determined by the ray be-

tween the aspiration level and reservation level (decision-maker-specified “worst case

scenario”) [96]. This method is discussed further in Section 3.1.4.

2.2.1.8 Goal Programming Method. This method is similar to the

goal attainment method, except that the transformed problem has equality instead

of inequality constraints. Because it is so similar, this method has the same relative
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advantages and disadvantages as the goal attainment method [33].

2.2.1.9 Lexicographic Method. As the name implies, this method takes

the objectives and orders them by preference. The mono-objective problems are

then solved one at a time while converting already solved objectives into constraints.

Though intuitive and easily solved, the main drawback of this method is that an

appropriate sequence of the objective functions must be determined without inadver-

tently excluding promising regions of the space prematurely [33,128].

2.2.2 Interactive Methods. Interactive methods belong to the progressive

methods family and thus allow the decision maker to tune preferences with regard to

tradeoffs as the methods progress. These methods find one and only one solution.

Several interactive methods are presented below.

2.2.2.1 Surrogate-Worth Tradeoff Method. This method adds an in-

teractive process to the compromise method (see Section 2.2.1.4) to progress towards

a solution. Since the decision maker has input throughout the process, a solution

found via this method has a good chance of being satisfactory. However, the choice of

opinion values can greatly affect the solution quality, and because it relies on gradient

information, this method should not be applied to problems for which the objective

functions are not differentiable [33,106].

2.2.2.2 Fandel Method. The goal of the Fandel method is to assist the

decision maker in choosing the weights used in the weighted-sum-of-the-objective-

functions method. Each objective function is first optimized separately to generate

the utopia point. This point and the feasible region are then used to calculate a

domain of variation (region of the objective space bounded by the minimum and

maximum values of each objective). An attempt is then made to find the hyperplane

parallel to the one passing through the extremities of the domain of variation and

tangent to the feasible space. The tangent point provides a vector that corresponds
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to weights that are used to determine a solution. The decision maker either accepts

this solution or the search space is reduced. The main drawback of the Fandel method

is that parts of the tradeoff surface cannot be approximated, and it only finds a single

solution. Additionally, it assumes that the solution that satisfies the decision maker

is the one closest to the ideal point, which may not be the case [33].

2.2.2.3 Step Method. This method is similar to the Fandel method in

that information about the preferences of the decision maker allows the search space

to be restricted at each iteration. The decision maker indicates an upper bound

for acceptable values of the objective functions and then weights are calculated such

that objectives with a larger range of possible values are given larger weights in the

weighted-sum-of-the-objective-functions. The problem is optimized and the new

solution is evaluated by the decision maker. If it is not acceptable, the upper bound

of the solution space can be adjusted and the weights recalculated. Compared with

the Fandel method, the weights have less importance because interaction with the

decision maker is done via selection of the desired upper bound and not the weights

directly [33].

2.2.2.4 Jahn Method. In contrast to the Fandel and STEP methods,

the Jahn method depends on both the decision maker preferences and gradient infor-

mation. It begins by choosing a starting point and then stepping through the solution

space using a gradient-based method and decision maker preferences toward a Pareto

optimal point. Since gradient information is required, the objective functions must

be differentiable [33].

2.2.2.5 Geoffrion Method. This method is similar to the Jahn method

and is based on the Frank-Wolfe algorithm. The method begins with a weighted-

sums-of-the-objective-function step. The resulting point is then used to linearize the

objective function and compute a direction that reduces the objective while main-

taining feasibility [52]. In the next step instead of performing a line search to find
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the optimal step along that direction (as in the Frank-Wolfe method), the step size

is determined by the decision maker. The new solution is either accepted by the

decision maker or the process is repeated [33].

2.2.2.6 Interactive Specification of Aspiration/Reservation Levels and

Achievement Scalarization Functions. As mentioned in Sections 2.2 and 2.2.1.7,

this method is based on idea that a decision maker has a desired level for each ob-

jective, as well as a level beyond which the solution is not acceptable. These values,

called aspiration levels and reservation levels, respectively, are used in a method sim-

ilar to distance-to-a-point or compromise methods (where the aspiration level is the

reference point and both are used to determine the search direction) in order to find a

single solution. The decision maker can then either accept the solution or revise the

aspiration and reservation levels [96]. This method is discussed further in Chapter

III.

2.2.3 Fuzzy Methods. Though real world phenomenon are rarely binary in

nature, for a long time the only tool for describing them was binary logic, written

in terms of true or false. In response, L.A. Zadeh developed a new logic based on

fuzzy sets, which not only offers a way to model uncertainty and imprecision, but also

accounts for progressive transition between states, e.g. shades of gray between black

and white. This is accomplished with a membership function, which relates each

decision variable to a continuous variable varying between zero and one and indicates

the degree to which the variable belongs to the set represented by the original logical

decision variable and allowing a progressive transition between true and false. Two

fuzzy logic methods are briefly presented [33,128].

2.2.3.1 Sakawa Method. This method uses fuzzy logic at all levels:

the parameters of the problem, constraints, and solution set. Typical of fuzzy logic

methods, the solutions have a membership function that is correlated with the orig-

inal objective function at a level set by the decision maker. This method allows
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the decision maker to specify the number of solutions desired, which is useful when

the decision maker is more demanding [33]. Sakawa also combined fuzzy logic with

evolutionary methods in order to handle multi-objective binary programming prob-

lems [129]. Despite its interesting advantages, the Sakawa method is cumbersome

and uses fuzzy sets and mathematical rules that are difficult to apply [33].

2.2.3.2 Reardon Method. In contrast, the Reardon method is a rela-

tively simplified fuzzy logic method. Its membership function is simply shaped and

easily obtained compared to the Sakawa method. It has been shown to give good

results on two test problems, Schaffer F2 test problem and the simplified Born-Mayer

test problem [33] and that, in contrast to genetic algorithms like the niched Pareto

approach (see Section 2.2.4.4), the efficiency of the algorithm is independent of the

number of objectives [120,121].

2.2.4 Multi-objective Methods Using Meta-Heuristics. Meta-heuristics are

general optimization methods which need some transformation before being applied

to the solution of a particular problem and are often analogous to real life concepts

[128]. They are usually applied to “hard” optimization problems. As discussed

in Section 2.1.2.3, meta-heuristics are not guaranteed to produce optimal solutions,

but they often produce good solutions in a reasonable amount of time [33]. Four

meta-heuristics are presented: simulated annealing, tabu search, scatter search and

genetic (evolutionary) algorithms.

2.2.4.1 Simulated Annealing. Simulated annealing, discussed pre-

viously for stochastic optimization in Section 2.1.2.3, has also been used in multi-

objective optimization [141]. Examples of multi-objective simulated annealing meth-

ods include Multiple Objective Simulated Annealing (MOSA) [33,47,93], Fuzzy Pareto

Simulated Annealing (FPSA) [133], and Pareto Archived Simulated Annealing (PASA)

[33]. MOSA uses simulated annealing to search the tradeoff surface, considering ob-

jectives separately to determine the probability of accepting a bad solution but using
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a weighted-sum-of-the-objective-functions approach to calculate the actual solution

fitness (i.e. the value of the weighted objective function). The method behaves well

because at a high temperature, the simulated annealing spreads the solution popu-

lation over the whole tradeoff surface [33]. If the temperature is “sufficiently high”

at the end of the simulation, MOSA can find solutions unreachable by the weighted-

sum-of-the-objective-functions method [147]; however, what constitutes “sufficiently

high” is completely problem-dependent is not generally known a priori. In FPSA,

simulated annealing is combined with fuzzy logic (see Section 2.2.3) in order to find an

approximation of the Pareto set [65]. PASA uses an aggregated function of objective

functions, coupled with a system that stores nondominated solutions separately from

the rest of the iterates and uses them to assess solution quality [33].

2.2.4.2 Tabu Search. Tabu search, discussed previously for stochastic

optimization (Section 2.1.2.3), has been successfully used in multi-objective searches

for continuous problems [33,55]. Implementations include M-Objective Tabu Search

[28], MOTS [47, 64], and New Multi-objective Tabu Search (NMTS) [118]. Tabu

search has also been used in conjunction with scatter search algorithms, e.g., Scatter

Tabu Search Procedure for Multiobjective Optimization (SSPMO) [103].

2.2.4.3 Scatter Search. Scatter search, discussed previously for stochas-

tic optimization (Section 2.1.2.3), has been successfully used in multi-objective searches

[18,58,97,98]. Implementations include the Scatter Tabu Search Procedure for Mul-

tiobjective Optimization (SSPMO) [103] and Multi-Objective Scatter Search (MOSS)

[19].

2.2.4.4 Genetic/Evolutionary Algorithms. Genetic algorithms, a type

of evolutionary algorithm, were also discussed as a stochastic optimization method in

Section 2.1.2.3. They are useful for multi-objective problems because they deal simul-

taneously with a set of possible solutions (the population) which allows the algorithm

to find several elements of the Pareto optimal set in a single run. Unlike many tra-
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ditional math programming techniques (e.g., aggregation methods), they can handle

discontinuous and concave Pareto fronts. A multi-objective genetic algorithm differs

from single-objective ones in how they evaluate solutions. Unlike single-objective ge-

netic algorithms, multi-objective ones cannot directly use the objective function value

as a measure of solution fitness, so some combination of the objectives must be used.

Many methods have been proposed, and multi-objective evolutionary algorithms can

be classified by how they determine if a solution is efficient: aggregating functions,

population-based approaches, and Pareto-based approaches [32,134].

Aggregating Functions. As discussed in Section 2.2.1, aggregating

functions are probably the most straightforward of approaches, but certain problems

exist. Linear aggregating functions, a weighted sum for example, cannot generate

nonconvex portions of the Pareto front no matter what weights are chosen. How-

ever, nonlinear functions–e.g., achievement scalarization functions (see Section 3.1.4

and [96]), the Keeney-Raiffa method (see Section 2.2.1.2), and the goal attainment

method (see Section 2.2.1.7)–do not suffer from this limitation and have been used

successfully in multi-objective combinatorial optimization [32].

Population-Based Approaches. Population-based approaches use

the population of the evolutionary algorithm to diversify the search and potentially

find multiple Pareto optimal points at each iteration, but the idea of dominance is

not directly incorporated into the selection process. An example of this type of

approach is the Vector Evaluated Genetic Algorithm (VEGA) developed by Schaf-

fer [132]. VEGA consists of a simple genetic algorithm with a modified selection

mechanism. At each generation, k sub-populations of size N/k, where N is the total

population size, are generated based on proportional selection according to each objec-

tive function, in turn [132]. These sub-populations are then shuffled together to form

one population to which crossover and mutation operators are applied. VEGA has

several problems, the most serious of which is that the selection method it uses does

not accurately incorporate Pareto dominance. If, for example, a good compromise
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(Pareto optimal) solution is generated, but it is not the best solution for any given

objective function, it will be discarded. Some methods have been developed to help

alleviate this, but the underlying problem remains [32, 47]. Other population-based

approaches include the Random Sampling Evolutionary Algorithm (RAND) [165] and

Hajela and Lin’s genetic algorithm (HLGA) [63,165].

Pareto-Based Approaches. In contrast to population-based ap-

proaches, this type of approach incorporates the concept of Pareto optimality di-

rectly into the selection method of the evolutionary algorithm by using dominance

rather than an aggregated objective function to measure fitness. Thus, the Pareto-

based approaches do not suffer the problems associated with VEGA. Many Pareto-

based approaches have been developed [32], including Goldberg’s Pareto Ranking

[59], Multi-Objective Genetic Algorithm (MOGA) [47, 51], the Nondominated Sort-

ing Genetic Algorithm (NGSA and NGSA-II) [42, 136, 165], Niched Pareto Genetic

Algorithm (NPGA) [68, 165], Strength Pareto Evolutionary Algorithm (SPEA and

SPEA2) [47, 165], Multi-Objective Messy Genetic Algorithm (MOMGA, MOMGA-

II, and MOMGA-IIa) [40], Multi-Objective Hierarchical Bayesian Optimization Al-

gorithm (hBOA) [32], Pareto Archived Evolutionary Strategy (PAES) [47, 79, 112],

Micro-Genetic Algorithm for Multi-Objective Optimization [31], and the General

Multi-Objective Program (GENMOP) [78,125].

2.2.5 Decision Aid Methods. Decision aid methods differ from the others

in several ways. Instead of filtering the elements of the solution set and keeping

those elements that could be compared to themselves (e.g., lexicographic optimality),

an order relation is set up among elements of the solution set and thus a set of

solutions (with a partial order relation, i.e., a relation that is reflective, asymmetric,

and transitive [153]), or a single solution (with a total order relation, i.e., a relation

that is reflective, asymmetric, transitive, and total1 [154, 160]), is obtained. Also,

1A binary relation R over a set X is total if it holds for all a and b in X that a is related to b or
b is related to a (or both), i.e., ∀a, b ∈ X, aRb ∨ bRa [161].
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these methods only work on discrete sets of points. The decision aid methods choose

or sort actions with respect to a set of criteria. Each method produces its own

definition of the value of a criterion [33]. Decision aid methods include ELECTRE

methods (I, IS, II, III, IV, and TRI) [43,56,130] and PROMETHEE (I and II) [130].

2.3 Methods for Stochastic Multi-objective Optimization

Generally, there are two types of stochastic optimization problems: those with

random noise in the function evaluations, and those with random algorithm choices

(such as the search direction) [134]. Most stochastic multi-objective problems solved

to date are of the second type. Examples include methods that use evolutionary

algorithms (see Section 2.2.4.4). Relatively few multi-objective solution methods of

the first type have been developed. Three methods proposed by Baba and Morimoto

[13] are discussed in Sections 2.3.1, 2.3.2, 2.3.3. A more recent method developed by

Audet et al. [12] is discussed in Section 2.3.4. This method has not yet been applied

to the stochastic case.

2.3.1 Learning Automata. Learning automata is a reinforcement (or feed-

back) learning scheme where actions by the automaton produce results for which

either reward or punishment ensue. The feedback then changes the probability of

choosing that action such that rewards increase the probability of selecting that ac-

tion again, and punishment decreases that probability. This process is repeated until

the automaton “learns” what actions are optimal [61, 134]. In the multi-objective

case, Baba and Morimoto show that an appropriately chosen learning scheme ensures

convergence to a “reasonable solution” for a finite number of candidate solutions [13].

2.3.2 Random Optimization Method. Random search methods–typically

used for single objective problems–are based on searching the problem domain in a

random manner in order to optimize an objective. These methods are the simplest

of stochastic optimization, but can be effective in certain cases [134]. Baba and

Morimoto showed that their random optimization algorithm is guaranteed to converge
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almost surely to a Pareto-optimal solution but only under strict assumptions on the

decision space, solution space, and error. They suggest further study to find a less

restrictive approach [13].

2.3.3 Stochastic Approximation Method. Baba and Morimoto [13, 14] pro-

pose a stochastic quasigradient method to solve the stochastic multi-objective opti-

mization problem. Subgradients are used for convex functions that are not necessarily

differentiable at all points. For the convex function f : Ω→ R, the set of subgradients

at xn in the open interval Ω is Gn = {c ∈ R : f(x)−f(xn) ≥ c(x−xn), ∀x ∈ Ω} [159].

A stochastic quasigradient is a stochastic estimate of the subgradient of the function

at the point xn, i.e., given a set of points {x0 . . . xn}, the stochastic subgradient ξn is

a random vector such that E(ξn|x0 . . . xn) = anF̂x(xn) + bn where the vector F̂x(xn)

is the subgradient of the function F (x) at the point x = xn, bn is a H-valued ran-

dom variable, H is a separable Hilbert space, and an is a positive real-valued random

variable. [48, 49, 116]. Under assumptions of continuity, compactness, and bounded

error, Baba and Morimoto show that the algorithm extended to the multi-objective

case converges with probability one to the global solution [14].

2.3.4 Bi-Objective Mesh Adaptive Direct Search (BiMADS). Audet et al.

have extended the Mesh Adaptive Direct Search (MADS) (discussed in Section 3.1.3)

framework to apply to the bi-objective case. Their algorithm, BiMADS, is similar to

reference point methods (see Section 2.2.1.3), but also takes advantage of the ordering

property of the Pareto front inherent only in bi-objective problems [12,22]. BiMADS

is shown to produce solutions satisfying some first order necessary conditions for

optimality based on the Clarke calculus [30], and like the NBI method (see Section

2.2.1.5), attempts to generate evenly distributed points on the Pareto front [12]. Thus

far BiMADS has been developed for deterministic problems; however, the extensions

of MADS to the mixed variable and stochastic case discussed in Chapter III would

also apply to BiMADS.
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2.4 More Generalized Stochastic Multi-objective Optimization Method

As seen throughout this chapter, many solution methods exist for both stochas-

tic optimization and multi-objective optimization when only one of the two charac-

teristics exists in the problem. As discussed in Section 2.3, four methods exist for

problems having both characteristics and because of necessary assumptions on the

decision and objective spaces, such methods are applicable only to a small number of

problems. None of these methods is applicable to stochastic, multi-objective, mixed-

variable optimization problems as considered in this research. Thus, a more generally

applicable method is required and is presented in Chapter III.
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III. Research Methodology

3.1 Components for a New Algorithm

In this chapter, an algorithm is presented for solving stochastic mixed variable

optimization problems with multiples objectives. This algorithm relies on a num-

ber of important features that are described here in greater detail. Particularly,

consider the following observations. Generalized pattern search with ranking and

selection (MGPS-RS) has been successfully developed for stochastic, linearly con-

strained mixed-variable problems [137, 138] and has been applied to a multi-echelon

repair system [144]. Mesh adaptive direct search (MADS) has been developed for de-

terministic, continuous, nonlinearly constrained problems [11]. However, MGPS-RS

and MADS in their current forms apply only to single-objective problems. Alter-

natively, interactive techniques using aspiration/reservation levels and scalarization

functions have been used successfully to find Pareto optimal solutions to determin-

istic multi-objective problems [62]. Finally, a multi-objective ranking and selection

technique by Lee et al. [85], called multi-objective optimal computing budget allocation

(MOCBA), has been applied to selecting the non-dominated set of inventory policies

for aircraft maintenance, a discrete variable problem [86].

The rest of this section gives a more detailed description of each of the methods

mentioned thus far. A new algorithm, called Stochastic Multi-Objective Mesh Adaptive

Direct Search (SMOMADS), is then proposed in Section 3.2, which combines elements

of these methods to handle the class of mixed variable, stochastic, multi-objective

optimization problems. A convergence analysis of the new algorithm then follows in

Section 3.3.

3.1.1 Ranking and Selection. Problems having stochastic responses can pose

a particular challenge for optimization algorithms that rely solely on comparisons of

trial points. Noise in the response can lead to errors in iterate selection if the observed

responses are comparatively different than the true function values. Methods for

selecting a “best” among several trial points must account for variation to provide
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some statistical assurance of correct selection. Achieving high confidence in the

correctness of selection requires additional replications (i.e., function evaluations)

at each trial point. Ranking and selection (R&S) considers multiple candidates

simultaneously at a reasonable cost. This is possible because R&S detects a relative

order of the candidates instead of generating precise estimates [139]. The discussion

of R&S that follows, including the notation, mirrors that of [139].

Let Xk denote the k-th element of a sequence of random vectors and xk denote

a realization of Xk. For a finite set of candidate points C = {Y1, Y2, . . . , YnC} with

nC ≥ 2, let fq = f (Yq) = E [F (Yq, ·)] denote the true mean of the response function F

at Yq for each q = 1, 2, . . . , nC . These response means can be ordered (from minimum

to maximum) as

f[1], f[2], . . . , f[nC ]. (3.1)

Denote by Y[q] ∈ C the candidate from C with the q-th lowest true objective function

value.

Given some δ > 0, called the indifference zone parameter, no distinction is made

between two candidate points whose true means satisfy f[2]− f[1] < δ. In such cases,

the method is said to be indifferent in choosing either candidate as the best. The

probability of correct selection (CS) is defined as

P {CS} = P
©
select Y[1]|f[q] − f[1] ≥ δ; q = 1, 2, . . . , nC

ª
≥ 1− α, (3.2)

where α ∈ (0, 1) is the significance level. Because random sampling guarantees that

P {CS} = 1

nC
, the significance level must satisfy 0 < α < 1− 1

nC
.

Because the true objective function values are not available, it is necessary

to work with the sample means of F . For each q = 1, 2, . . . , nC , let sq be the

total number of replications at Yq and let {Fqs}sqs=1 = {F (Yqs,Wqs)}sqs=1 be the set of

simulated responses, where {Yqs}sqs=1 are the replications at candidate point Yq, and

Wqs are realizations of the random noise. For each q = 1, 2, . . . , nC , the sample mean
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Procedure RS(C,α, δ)

Inputs: C = {Y1, Y2, . . . , YnC} , α ∈ (0, 1) , δ > 0.
Step 1: For each Yq ∈ C, use an appropriate statistical technique to de-

termine the number of samples sq required to meet the probability of
correct selection guarantee in Equation (3.2), as a function of α, δ and
respoinse variation of Yq.

Step 2: For each q = 1, 2, . . . , nC , obtain replicated responses Fqs, s =
1, 2, . . . , sq, and compute the sample mean F q, according to Equation
(3.3).

Return: Ŷ[1] = arg
¡
F [1]

¢
.

Figure 3.1: A generic R&S Procedure (see Figure 1 in [139])

F q is given by

F q =
1

sq

sqX
s=1

Fqs. (3.3)

The sample means can be ordered and indexed in the same manner as in Equation

(3.1), and let Ŷ[q] ∈ C denote the candidate with the q-th lowest estimated objective

function value as determined by the R&S procedure. The candidate corresponding

to the minimum mean response, Ŷ[1] = arg
¡
F [1]

¢
, is chosen as the best point. A

generic R&S procedure is shown in Figure 3.1. The algorithmic choices made in Step

1 define different R&S methods. See [110,115,122], for examples.

3.1.2 MGPS-RS. Pattern search algorithms are defined through a finite set

of directions used at each iteration. The direction set and a step length parameter

are used to construct a discrete set of points, or mesh, around the current iterate.

The mesh at iteration k is defined to be

Mk =
[
x∈Sk

{x+∆m
k Dz : z ∈ NnD} , (3.4)

where Sk is the set of points where the objective function f has been evaluated by

the start of iteration k (Sp is the set of initial points), ∆
m
k is called the mesh size

parameter, and D is a positive spanning set (see [39]); i.e., a set of directions that
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positively spans Rn. Additional restrictions on D are that each direction d ∈ D,

j = 1, 2, . . . , nD, must be the product of some fixed nonsingular generating matrix

G ∈ Rn×n and an integer vector zj ∈ Zn [146]. For bound and linearly constrained

problems, the directions in mustD be sufficiently rich to ensure that polling directions

can be chosen that conform to the geometry of the constraint boundaries, and that

these directions be used infinitely many times [2]. A finite set of trial points called

the poll set is then chosen from the mesh, evaluated, and compared to the incumbent

solution. If improvement is found, the incumbent is replaced and the mesh is retained

or coarsened via the mesh size parameter ∆m
k . If not, the mesh is refined and a new

set of trial points is selected.

Initially developed by Torczon [146], GPS was extended by Lewis and Torczon to

include bound [87] and linear [88] constraints. GPS was further extended by Lewis

and Torczon [89] to include nonlinear constraints using an augmented Lagrangian

approach by Conn, Gould, and Toint [34], and by Audet and Dennis [10], via a

filter [50]. Dissatisfaction with the convergence theory of filter-GPS led to the creation

of MADS [11] (see section 3.1.3). GPS for bound constrained mixed variable problems

(or mixed variable pattern search — MVPS) was introduced separately by Audet and

Dennis [9], and extended to linearly constrained by problems by Abramson [2]. It was

then extended further to general nonlinearly constrained MVP problems, also via a

filter, by Abramson, Audet and Dennis [2, 6].

The GPS framework, in conjunction with ranking and selection, was used by

Sriver [137, 139] to handle stochastic MVP problems. In this case, the poll set at

each iteration is given by Pk(xk)
S
N (xk), whereN (xk) is a user-defined set of discrete

neighbors around xk and

Pk(x) =
©
x+∆m

k (d, 0) : d ∈ Di
k

ª
, (3.5)

where (d, 0) denotes that the variables have been partitioned into continuous and dis-

crete variables, with the discrete variables remaining unchanged. The set of discrete
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neighbors is defined by a set-valued function N : Ω→ 2Ω, where 2Ω denotes the power

set of Ω. The notation y ∈ N (x) means that the point y is a discrete neighbor of x.

By convention, x ∈ N (x) for each x ∈ Ω, and it is assumed that N (x) is finite [137].

A generic indifference-zone ranking and selection procedureRS(Pk(xk)
S
N (xk), α, δ),

with indifference-zone parameter δ and significance level α, is used to select among

points in the poll set for improved solutions, i.e., δ-near-best mean. The rules for

updating the mesh size are as follows [11]. Given a fixed rational number τ > 1

and two integers m− ≤ −1 and m+ ≥ 0, the mesh size parameter ∆m
k is updated

according to the rule,

∆m
k+1 = τwk∆m

k , (3.6)

where

wk ∈

⎧⎨⎩ {0, 1, . . . ,m+}, if an improved mesh point is found

{m−,m− + 1, . . . ,−1}, otherwise.
(3.7)

If no improvement can be found, an extended poll step is conducted to search amongst

any discrete neighbor y ∈ N (xk) that satisfies f(y) < f(xk) + ξk, where ξk is called

the extended polled trigger. Each neighbor meeting this criteria, in turn, becomes

the poll center, and the extended poll continues until either a better point than the

best iterate is found, or else they are all worse than the extended poll center [9,137].

Sriver showed that this algorithm generates an iteration subsequence with almost

sure convergence to a stationary point “appropriately defined” in the mixed-variable

domain [138]. The MGPS-RS Algorithm is shown in Figure 3.2.

3.1.3 Mesh Adaptive Direct Search. Mesh Adaptive Direct Search (MADS)

is a class of algorithms developed by Audet and Dennis for minimization of nonsmooth

functions of the type f : Rn → R
S
{+∞} under general constraints x ∈ Ω ⊆ Rn and

Ω 6= ∅. The feasible region Ω may be defined by blackbox constraints, e.g., computer

code that returns a yes/no answer to whether or not a trial point is feasible [11].
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A General MGPS-RS Algorithm

• INITIALIZATION: Let X0 ∈ Ω, ∆m
0 > 0, ξ > 0, α0 ∈ (0, 1) and δ0 > 0.

Set the iteration and R&S counters k = 0 and r = 0 respectively.

• POLL STEP: Set extended poll trigger ξk ≥ ξ. Use R&S procedure
RS(Pk(Xk)

S
N (Xk), αr, δr) to return the estimated best solution Ŷ .

Update αr+1 < αr, δr+1 < δr, and r = r + 1. If Ŷ 6= Xk, the step
is successful, update Xk+1 = Ŷ , ∆m

k+1 ≥ ∆m
k according to Equations

(3.6) and (3.7), and k = k + 1 and return to POLL STEP. Otherwise,
proceed to EXTENDED POLL STEP.

• EXTENDED POLL STEP: For each discrete neighbor Y ∈ N (Xk)
that satisfies the extended poll trigger condition F (Y ) < F (Xk) + ξk,
set j = 1 and Y j

k = Y and do the following.

— Use R&S procedure RS(Pk(Y
j
k ), αr, δr) to return the estimated

best solution Ŷ . Update αr+1 < αr, δr+1 < δr, and r = r + 1.
If Ŷ 6= Y j

k , set Y
j+1
k = Ŷ and j = j + 1 and repeat this step.

Otherwise, set Zk = Y j
k and go to the next step.

— Use R&S procedure RS(Xk

S
Zk), αr, δr) to return the estimated

best solution Ŷ . Update αr+1 < αr, δr+1 < δr, and r = r + 1.
If Ŷ = Zk, the step is successful, update Xk+1 = Ŷ , ∆m

k+1 ≥ ∆m
k

according to Equations (3.6) and (3.7), and k = k + 1 and return
to the POLL STEP. Otherwise, repeat the EXTENDED POLL
STEP for another discrete neighbor that satisfies the extended
poll trigger condition. If no such discrete neighbors remain in
N (Xk), set Xk+1 = Xk, ∆

m
k+1 < ∆m

k according to Equations (3.6)
and (3.7), and k = k + 1 and return to the POLL STEP.

Figure 3.2: The Mixed-variable GPS Ranking and Selection (MGPS-RS) Algorithm
[138]
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MADS is similar to MGPS-RS in the generation of the mesh and poll sets (see

Equations (3.4) and (3.5) in Section 3.1.2) as well as in the rules for updating the mesh

(see Equations (3.6) and (3.7)). However, the key difference is that in MADS [11] a

poll size parameter ∆p
k is introduced, which satisfies ∆

m
k ≤ ∆p

k for all k such that

lim
k∈K

∆m
k = 0 ⇔ lim

k∈K
∆p

k = 0 for any infinite subset of indices in K. (3.8)

The poll size parameter controls the magnitude of the distance between the incumbent

solution, and the set of directions used to define the poll set are constructed in a

different manner. In GPS, only one value ∆k = ∆p
k = ∆m

k is used, and a set of

positive spanning directions Dk ⊂ D is chosen at each iteration. In the poll step of

MADS, both of these restrictions are relaxed, in that neither ∆p
k = ∆m

k nor Dk ⊂ D

generally hold. The poll step evaluates points lying in a frame (analogous to the

poll set in GPS), constructed differently than GPS. The MADS frame is defined as

follows (see [11]).

Definition 3.1.1. At each iteration k, the MADS frame is defined to be the set

Pk = {xk +∆m
k d : d ∈ Dk} ⊂Mk (3.9)

where Dk is a positive spanning set such that 0 6∈ Dk and for each d ∈ Dk the following

conditions must be met [11]:

1. d can be written as a nonnegative integer combination of the directions in D :

d = Du for some vector u ∈ NnDk that may depend on the iteration number k,

2. the distance from the frame center xk to a frame point xk+∆m
k d ∈ Pk is bounded

above by a constant times the poll size parameter:

∆m
k k d k≤ ∆p

kmax {k d0 k: d0 ∈ D} ,

3. limits of the normalized sets Dk =
n

d
kdk : d ∈ Dk

o
are positive spanning sets.
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A General MADS Algorithm

• INITIALIZATION: Let x0 ∈ Ω, ∆m
0 ≤ ∆p

0, D, G, τ , w
−, and w+ satisfy

the requirements of a MADS frame set given in Definition 3.1.1.
Set the iteration counter k ← 0.

• SEARCH AND POLL STEP: Perform the SEARCH and possibly the
POLL steps (or part of them) until an improved mesh point xk+1 is
found on the mesh Mk (where Mk is defined as for GPS in Equation
(3.4) in Section 3.1.2).

— OPTIONAL SEARCH: Evaluate fΩ on a finite subset of trial
points on the mesh Mk.

— LOCAL POLL: Evaluate fΩ on the frame Pk (where Pk is as given
in Equation (3.9) in Section 3.1.2).

• PARAMETER UPDATE: Update ∆m
k+1 according to Equations (3.6)

and (3.7) and ∆p
k+1 so that Equation (3.8) is satisfied.

Set k ← k + 1 and go back to the SEARCH AND POLL step.

Figure 3.3: A General MADS Algorithm [11]

The general MADS algorithm, as developed by Audet and Dennis, is shown in Figure

3.3. This algorithm is extended to the mixed variable case in [5] and in Section 3.3.1.

Extension to the stochastic case is accomplished via ranking and selection in a manner

similar to MGPS-RS. The extended algorithm, mixed variable mesh adaptive direct

search with ranking and selection (MVMADS-RS), is shown in Figure 3.4.

3.1.4 Interactive Specification of Aspiration/Reservation Levels and Scalariza-

tion Functions. As shown in Figure 3.5(a), points on the Pareto front can be

found by varying the relative importance, i.e., trade-off coefficients or weights, of the

distance to a given point. Using the utopia point U, any point between points D

and E can be found. (Points D and E correspond to Pareto optimal solutions found

by using the utopia point in one dimension and the nadir point in the other, i.e., the

best possible solution for one objective, but not for the other.) By using aspiration

point A and varying the weights or slope of the ray emanating from it, points be-

tween B and C can be found. There are many methods for determining which ray

to use [92]. This particular method uses the reservation point R as the second point
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A General MVMADS-RS Algorithm

• INITIALIZATION: Let X0 ∈ Ω, ∆p
k ≥ ∆m

k > 0, ξ > 0, α0 ∈ (0, 1)
and δ0 > 0. Set the iteration and R&S counters k = 0 and r = 0
respectively.

• POLL STEP: Set extended poll trigger ξk ≥ ξ. Use R&S procedure
RS(Pk(Xk)

S
N (Xk), αr, δr) to return the estimated best solution Ŷ .

Update αr+1 < αr, δr+1 < δr, and r = r + 1. If Ŷ 6= Xk, the step is
successful, update Xk+1 = Ŷ , ∆p

k+1 ≥ ∆p
k according to Equations (3.6)

and (3.7), ∆m
k+1 ≥ ∆m

k so that Equation (3.8) is satisfied, and k = k+1
and return to POLL STEP. Otherwise, proceed to EXTENDED POLL
STEP.

• EXTENDED POLL STEP: For each discrete neighbor Y ∈ N (Xk)
that satisfies the extended poll trigger condition F (Y ) < F (Xk) + ξk,
set j = 1 and Y j

k = Y and do the following.

— Use R&S procedure RS(Pk(Y
j
k ), αr, δr) to return the estimated

best solution Ŷ . Update αr+1 < αr, δr+1 < δr, and r = r + 1.
If Ŷ 6= Y j

k , set Y
j+1
k = Ŷ and j = j + 1 and repeat this step.

Otherwise, set Zk = Y j
k and go to the next step.

— Use R&S procedure RS(Xk

S
Zk), αr, δr) to return the estimated

best solution Ŷ . Update αr+1 < αr, δr+1 < δr, and r = r + 1. If
Ŷ = Zk, the step is successful, update Xk+1 = Ŷ , ∆p

k+1 ≥ ∆p
k ac-

cording to Equations (3.6) and (3.7), ∆m
k+1 ≥ ∆m

k so that Equation
(3.8) is satisfied, and k = k + 1 and return to the POLL STEP.
Otherwise, repeat the EXTENDED POLL STEP for another dis-
crete neighbor that satisfies the extended poll trigger condition.
If no such discrete neighbors remain in N (Xk), set Xk+1 = Xk,
∆p

k+1 < ∆p
k according to Equations (3.6) and (3.7), ∆

m
k+1 < ∆m

k so
that Equation (3.8) is satisfied, and k = k + 1 and return to the
POLL STEP.

Figure 3.4: The Mixed-variable MADS with Ranking and Selection (MVMADS-RS)
Algorithm
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(a) Pareto solutions corresponding to different
component achievement functions (Figure 3 in
[96])

(b) Component Achievement Functions for Min-
imized Criteria (Figure 4 in [96])

Figure 3.5: Graphical illustrations of functions used for analysis of Pareto optimal
solutions

in determining the direction of the ray [96].

This technique is based on the assumption that the decision maker has an idea

of what is desired for each objective, as well as what minimum, or maximum, values

are acceptable. These values are referred to as the aspiration and reservation values,

respectively; i.e., points A and R discussed previously and shown in Figure 3.5(a).

These values are then used inside of an achievement scalarization function of the form

shown graphically in Figure 3.5(b) and given by

S(q, q̄, q) = min
1≤i≤J

ui(qi, q̄i, qi) +
JX
i=1

ui(qi, q̄i, qi). (3.10)

The function ui is called a component achievement function, i.e., strictly monotone

function of the objective function vector components qi = fi(x), i = 1, 2, . . . , n, given

by

ui(qi, q̄i, qi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αiwi(q̄i − qi) + 1, qi < q̄i

wi(q̄i − qi) + 1, q̄i ≤ qi ≤ q
i

βiwi(qi − qi), q
i
< qi,

(3.11)
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where q̄i and q
i
are the aspiration and reservation levels, respectively, for objective

i, wi = 1/
³
q
i
− q̄i

´
, and αi, βi, i = 1, 2, . . . , J , are given parameters that are set in

such a way that ui takes the values at the utopia, aspiration, reservation, and nadir

points, given by

ui
¡
qUi , ·

¢
= 1 + β̄, ui (q̄i, ·) = 1, ui

³
q
i
, ·
´
= 0, ui

¡
qRi , ·

¢
= −η̄,

respectively, and β̄ and η̄ are given positive constants, typically set to 0.1 and 10, re-

spectively [96]. The maximization of Equation (3.10) provides proper Pareto optimal

solutions nearest the aspiration level (see point K in Figure 3.5(a)).

3.1.5 Multi-Objective Ranking and Selection. Lee et al. [83] propose a perfor-

mance index to measure the degree that a point is dominated in the Pareto sense when

the objective function evaluations are subject to noise. They then use this measure

in the Multi-objective Optimal Computing Budget Allocation (MOCBA) algorithm

to determine a Pareto optimal set for multi-objective simulation-based optimization

problems [86]. Given a set of designs i = 1, 2, . . . , n, evaluated by J performance

measures μij, j = 1, 2, . . . , J , through some simulation (or other estimation method),

μij is a random variable whose Bayesian posterior distribution can be derived based

on its prior distribution and the simulation output [83]. Define a performance index

ψi =
nY

k=1,k 6=i
[1− P (μk ≺ μi)] , (3.12)

where P (μk ≺ μi) represents the probability that design k dominates design i. Under

the assumption that the performance measures are independent and follow continuous

distributions such that

P (μk ≺ μi) =
JY

j=1

P (μkj ≤ μij) ,

45



ψi measures the probability that design i is not dominated by any other designs

and can be used inside of a ranking and selection framework to find the set of non-

dominated points rather than a single best point. When approximating a Pareto

set, two types of error exist: Type I (e1), the probability that at least one design left

out of the efficient set is non-dominated, and Type II (e2), the probability that at

least one design in the efficient set is dominated. As these errors both approach zero,

the experimental Pareto set approaches the true1 Pareto set. It is shown that these

errors are bounded by the approximated errors ae1 given by

e1 ≤ ae1 =
X
i∈Sp

ψi

and ae2 given by

e2 ≤ ae2 =
X
i∈Sp

(1− ψi) ,

respectively, and that the observed Pareto set determined by MOCBA approaches

the true Pareto set asymptotically with probability 1 [84,85].

In each iteration of MGPS-RS or MADS, only a finite number of points are

evaluated by the ranking and selection procedure. Thus, this type of ranking and

selection method could be substituted for the single objective ranking and selection

method inside the MGPS-RS or MADS algorithms to develop multi-objective versions.

Alternatively, the performance measure ψ could be substituted for the objective func-

tion value inside of a traditional ranking and selection procedure. In this case, the

convergence results from [84,85] would have to be reverified.

1In practice, the complete true Pareto set is not found. In this context, true Pareto set refers
to an approximation containing only efficient points in which no efficient points were considered but
then not selected as such.
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3.2 Stochastic Multi-Objective Mesh Adaptive Direct Search

(SMOMADS)

A new two-stage algorithm which uses the methods of Section 3.1 to numer-

ically solve mixed variable stochastic multi-objective optimization problems is now

introduced. In the first stage, a convex combination of objectives, via scalarization

functions and aspiration/reservation levels of the decision maker, is used to deter-

mine an approximation of the Pareto front in a region of interest. For each pair of

aspiration and reservation levels, MGPS-RS or MVMADS-RS can be used to gen-

erate a single Pareto point. (Extension of MADS to the mixed-variable case–MV-

MADS–is discussed in Sections 3.2.1.4 and 3.3.1 and extension to the stochastic

case–MVMADS-RS–is discussed in Section 3.3.2.) However, since convexity of the

actual Pareto frontier is not assumed, some regions in the Pareto frontier may not

contain any of the generated points. In the second stage, the single-objective rank-

ing and selection routine inside of MGPS-RS is replaced with MOCBA, so that the

discrete points in the mesh can be evaluated with respect to multiple objectives.2 A

graphical representation is shown in Figure 3.6 and descriptions of each step follow.

3.2.1 Stage 1. Stage 1 of the method consists of aspiration and reservation

level analysis in order to represent the original problem as one with a single objective

that can then be solved using MGPS-RS or MVMADS-RS.

3.2.1.1 Aspiration and Reservation Level Analysis. As discussed in

Section 3.1.4, the multiple objectives are combined into a single objective problem of

the form shown in Equation (3.10). Each subproblem, or choice of a specific pairing of

aspiration and reservation levels, produces an approximate Pareto point. There are

many ways to produce such aspiration/reservation level pairings. (In this algorithm,

the problem of determining these pairings is referred to as the master problem.) His-

2The theoretical convergence properties developed in Section 3.3.3 do not depend on stage 2 of
the algorithm. It was added to better determine non-convex Pareto frontiers. As the algorithm was
implemented and tested, the good performance of Stage 1 made Stage 2 unnecessary for the problems
tested. Since it may still be helpful for many problems, Stage 2 remains part of the algorithm.
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Figure 3.6: Stochastic Multi-Objective Mesh Adaptive Direct Search (SMOMADS)

torically, in interactive specification of aspiration and reservation levels, a decision

maker was actively involved in choosing these points [62]. However, if this inter-

action is not possible or if the decision maker has only specified a range of values

for aspiration and reservation levels, some other method must be used. In the case

where a range of values has been specified, the problem is that of determining an

approximation to the Pareto frontier within a region of interest. Such a problem is

similar to that of approximating a response surface with aspiration and reservation

levels as the decision variables. Thus, experimental design methods apply.

3.2.1.2 Example. Given a problem of the form

min
x∈Ω
(f1(x), f2(x))

where Ω represents some feasible region and that the (as yet unknown) Pareto front

is as shown by the curve in Figure 3.7. The utopia and nadir points are determined

to be (1,3) and (6,8), and depicted by points U and R, respectively, in the figure.
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Figure 3.7: Graphical Example of Aspiration/Reservation Level Analysis

After discussion with the decision maker, it is decided that the algorithm should

examine aspiration levels between 1 and 3 for objective 1 and between 3 and 6 for

objective 2 and examine reservation levels between 4 and 7 for objective 1 and between

7 and 10 for objective 2. (This is depicted by the rectangles in Figure 3.7.) A central

composite design with 4 factors (aspiration and reservation levels for 2 objectives) is

constructed, resulting in 36 test points, i.e., 36 pairs of aspiration and reservation

levels. One of these pairings is shown by the points A and R in Figure 3.7. This

pair is used to determine the component achievement functions using Equation (3.11),

which become

u1(q1, 1, 4) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α1w1(1− q1) + 1, q1 < 1

w1(1− q1) + 1, 1 ≤ q1 ≤ 4

β1w1(4− q1), 4 < q1

u2(q2, 6, 7) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α2w2(6− q2) + 1, q2 < 6

w2(6− q2) + 1, 6 ≤ q2 ≤ 7

β2w2(7− q2), 7 < q2.

These equations are used by Equation (3.10), the single objective to be solved by the

subproblem.
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3.2.1.3 MGPS-RS for Problems with Linear Constraints. This step

uses the NOMADm [3] implementation of MGPS-RS to solve each single objective

subproblem of the form discussed in Section 3.1.4. MGPS-RS is discussed in detail

in Section 3.1.2 and has been shown to have strong convergence properties. (See

Section 3.3.3.1 and [137].)

3.2.1.4 MV-MADS for Problems with Nonlinear Constraints. Sim-

ilarly, this step of SMOMADS uses the NOMADm implementation of MVMADS-

RS [3] to solve each single objective subproblem of the form discussed in Section

3.1.4. MADS is discussed in detail in Section 3.1.3 and has also been shown to

have strong convergence properties for the deterministic case [11]. (See Section 3.3.1

and [5] for MV-MADS.) Conjecture of convergence results for the stochastic case

(MVMADS-RS) are discussed in Section 3.3.10.

3.2.1.5 Adding Points to the Efficient Set. The algorithm is designed

so that each subproblem should produce an efficient point. In fact, this is always the

case for deterministic problems (see Lemma 3.3.11). In stochastic problems, as the

number of iterations of the single objective solver is allowed to approach infinity, the

solution converges to an efficient point with probability one (see Theorem 3.3.12 and

Conjecture 3.3.10). However, in practice, since the number of iterations is finite, the

addition of dominated points is possible. Therefore, points are checked for Pareto

dominance before they are allowed to enter the efficient set. If a point is dominated,

it is “filtered” and does not enter the efficient set. Ideally, the filter should also

check to see if the new point dominates other points in the current efficient set. This

feature is suggested for follow-on research in Chapter 6.2.3.3.

3.2.1.6 Tests for Quality of the Pareto Set. An exact Pareto set

often has an infinite number of efficient points. Since multi-objective solvers provide

only an approximate Pareto set, the quality of the approximation is of particular

interest. Relatively few papers in the literature focus on quality metrics for Pareto
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set approximations and most make the assumption that the true set is known a priori.

Since no such assumption is made here, the quality metrics introduced by Wu and

Azarm [163] are used to assess the quality of the Pareto set, because their metrics

measure the quality (accuracy, spread, cluster, etc.) without any knowledge of the

true Pareto set. Specific metrics, as introduced by Wu and Azarm [163], are described

below:

1. Scaled Objective Space. All the quality metrics used in this research are

based on the existence of “bad” objective function values {f b1 , . . . , f bJ} that are

worse than all points in the Pareto set, and “good” objective function values

{f g1 , . . . , f gJ} that are better than all points in the Pareto set. The utopia and

nadir points can be used for these values, other points, which define a smaller

region, can also be used, as determined by the user. All the metrics require

that Pareto optimal points be scaled using

f j(xk) =
fj(xk)− fgj
f bj − f gj

, (3.13)

where fj(xk) is the value of the j-th objective at the point xk, f j(xk) is the

scaled value of the j-th objective at the point xk, and f gj and f bj are the good

and bad values, respectively, of the j-th objective function. The metrics that

follow are heavily dependent on choice of fg and f b points. Thus these metrics

are better suited to relative comparisons between sets, e.g., measuring how the

quality of the set improves as points are added, rather than giving an absolute

measure of the quality of a particular set.

2. Hyperarea Difference. The hyperarea difference (HD(P )) provides a quan-

titative means to evaluate the difference between the size of the scaled objective

space dominated by an approximate Pareto set and that of the space dominated

by the true set itself (which is equal to 1 when scaled). Although the actual

Pareto set is usually unknown, it is still possible to instead compare two ex-

perimental sets with respect to how much worse they are than the true Pareto
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in the scaled objective space. The salient point is that, though the sets are

measured with respect to the true set, the comparison and inferences are of

the two experimental sets in relation to each other. Given an observed Pareto

optimal set, scaled appropriately by Equation (3.13), the hyperarea difference

can be calculated as

HD(P ) = 1−(
npP
r=1

(
(−1)r+1

"
np−r+1P
k1=1

· · ·
np−(r−l+1)+1P
kl=kl−1+1

· · ·
npP

kr=kr−1

mQ
i=1

∙
1− r

max
j=1

¡
fi(xkj)

¢¸¸¾¾

where np is the number of observed Pareto optimal points. The hyperarea

metric becomes difficult to calculate as the number of points in the efficient

set becomes large. For this reason, this metric was not calculated. However,

it could be useful in the determination of termination criteria, as described in

Section 4.4.2.

3. Pareto Spread. The Pareto spread measures how widely the experimental

Pareto optimal set spreads over the objective space. The overall Pareto spread

(OS(P )) considers all objectives together and is defined as the volume ratio of

two hyper-rectangles. One rectangle is defined by f b and f g for each objec-

tive and the other is defined by the extreme points in the experimental Pareto

optimal set. The overall Pareto spread can calculated as

OS(P ) =
mY
i=1

¯̄
max

©
fi(xk) : k = 1, 2, . . . , np

ª
−min

©
fi(xk) : k = 1, 2, . . . , np

ª¯̄
.

Similarly, the k-th objective Pareto spread

OSk(P ) =
¯̄
max

©
fk (xi) : i = 1, 2, . . . , np

ª
−min

©
fk (xi) : i = 1, 2, . . . , np

ª¯̄
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is a measure of how the experimental Pareto optimal set spreads over the ob-

jective space when each objective is considered individually.

4. Number of Distinct Choices. When comparing two Pareto sets, the one

with more points may appear to be better. However, this may not be the case.

If the points in a Pareto set P are too close together, according to some distance

metric, they may then be indistinguishable from each other for practical design

purposes. The number of distinct choices (NDCμ(P )) is a measure of the

number of Pareto points that are distinguishable (i.e., far enough away) from

each other. It is calculated as follows. A quantity μ is given by the decision

maker which divides the m-dimensional objective space into 1/μm small grids.

The indicator variable

NTμ(q, P ) =

⎧⎨⎩ 1, ∃ pk ∈ P pk ∈ Tμ(q)

0, ∀ pk ∈ P pk 6∈ Tμ(q)

is used to indicate whether a particular region Tμ(q) contains any point pk in the

Pareto set. The number of distinct choices can then be calculated by summing

the number of regions that contain at least one point,

NDCμ(P ) =
v−1X
lm=0

· · ·
v−1X
l2=0

v−1X
l1=0

NTμ(q, P )

where q = (q1, q2, . . . , qm) with qi =
li
v
.

5. Cluster. Like the previous metric, the cluster metric CLμ(P ) quantifies how

closely spaced together and, as can be seen in

CLμ(P ) =
N(P )

NDCμ(P )
,

it is the ratio of the number of experimental Pareto solutions N(P ) to the

number of distinct choices.
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(a) Objective Space (b) Design Space Showing Mesh

Figure 3.8: Notional approximated Pareto set and mesh for a two-objective problem
with two design variables

3.2.2 Stage 2. Though interactive specification of aspiration/reservation

levels and scalarization functions of the type discussed in Section 3.1.4 is capable of

finding Pareto points in nonconvex regions of the Pareto front, it is not guaranteed to

find all points. It is possible that some efficient points may not be found. Therefore,

a second (optional) stage is added for those cases in which missing points may pose

a particular problem.3 This stage does not effect the convergence theory. In this

stage, a discrete mesh (similar to that used for MGPS-RS and MADS) around the

current efficient points is generated (see Section 3.1.2) and then a multi-objective

ranking and selection algorithm is used to check for new efficient points on the mesh,

which is similar to the frame used by MADS given in Equation (3.4), except that S0 is

replaced by Se, the set of efficient points found in stage 1. A graphical representation

of a notional problem is shown in Figure 3.8.

3.2.2.1 Multi-Objective Ranking and Selection. A version of Multi-

objective Optimal Computing Budget Allocation algorithm (MOCBA), developed by

Lee et al. is used to check for new efficient points on the mesh. As discussed in Section

3In this research, the algorithm performed so well on the test problems that the second stage was
not necessary; however, it is suggested as follow-on research in Section 6.2.2.
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3.1.5, MOCBA has been used successfully for multi-objective ranking and selection

problems [83,86] and the observed Pareto set determined by MOCBA approaches the

true Pareto set asymptotically with probability 1 [85].

3.3 Convergence Results

Since existing convergence results for MADS apply only to NLP problems, the

first part of this subsection provides a convergence theory for an extension of MADS

to mixed variable problems, calledMV-MADS. The extension is very straightforward,

so that the algorithm is almost identical to mixed variable pattern search, except for

the traditional differences between GPS and MADS with respect to poll directions

and and mesh parameters. This work is based on the joint work done in [5], and the

results presented here match those of [5], unless otherwise noted.

3.3.1 Convergence Results for Mixed-Variable MADS (MV-MADS). Given

a constrained optimization problem with objective function f : Ω → R, where Ω

represents the feasible region, let fΩ : Rn → R be defined by fΩ = f + ψ, where

ψ(x) = 0 if x ∈ Ω, and +∞ otherwise, and assume the following:

A1. An initial point x0 with fΩ(x0) <∞ is available.

A2. All iterates {xk} generated by MV-MADS lie in a compact set.

A3. The set of discrete neighbors N (xk) lies on the mesh Mk.

Under these assumptions, the following results are obtained by proofs that are iden-

tical to those found in Audet and Dennis [9] and Abramson [2] for mixed variable

GPS:

• lim inf
k→+∞

∆p
k = lim inf

k→+∞
∆m

k = 0;

• there exists a refining subsequence {xk}k∈K of minimal frame centers for which

there are limit points x̂ = lim
k∈K

xk, ŷ = lim
k∈K

yk, and ẑ = (ẑc, ŷd) = lim
k∈K

zk, where

each zk ∈ Ω is the endpoint of the extended poll step initiated at yk ∈ N (xk),

and lim
k∈K

∆p
k = 0.
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Some of the results that follow require the additional assumption that ŷ ∈ N (x̂).

Additionally, note the following properties from Clarke [30]:

• Any convex set is regular at each of its points.

• Both TCo
Ω (x) and TCl

Ω (x) are closed, and both TCl
Ω (x) and TH

Ω (x) are convex.

• TH
Ω (x) ⊆ TCl

Ω (x) ⊆ TCo
Ω (x).

• Rockafellar [124] showed that, if TH
Ω (x) is nonempty, T

H
Ω (x) = int(T

Cl
Ω (x)), and

therefore, TCl
Ω (x) = cl(T

H
Ω (x)).

A generalization [74] of the Clarke [30] directional derivative, in which function eval-

uations are restricted to points in the domain, is needed. The generalized directional

derivative of a locally Lipschitz function f at x ∈ Ω in the direction v ∈ Rn is defined

by

f◦(x; v) := lim sup

y → x, y ∈ Ω

t ↓ 0, y + tv ∈ Ω

f(y + tv)− f(y)

t
. (3.14)

The following four definitions [30,74,124] are needed. They have been adapted to the

context of this particular problem, where only a subset of the variables are continuous.

The standard definitions follow when all variables are continuous, i.e., when nd = 0

and x = xc.

Definition 3.3.1. A vector v ∈ Rnc is said to be a hypertangent vector to the con-

tinuous variables of the set Ω at the point x = (xc, xd) ∈ Ω if there exists a scalar

ε > 0 such that

(y + tw, xd) ∈ Ω for all y ∈ Bε(x
c) with (y, xd) ∈ Ω, w ∈ Bε(v) and 0 < t < ε.

The set TH
Ω (x) of all hypertangent vectors to Ω at x is called the hypertangent cone

to Ω at x.
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Definition 3.3.2. A vector v ∈ Rnc is said to be a Clarke tangent vector to the

continuous variables of the set Ω at the point x = (xc, xd) ∈ cl(Ω) if for every sequence

{yk} that converges to xc with (yk, x
d) ∈ Ω and for every sequence of positive real

numbers {tk} converging to zero, there exists a sequence of vectors {wk} converging

to v such that (yk + tkwk, x
d) ∈ Ω. The set TCl

Ω (x) of all Clarke tangent vectors to Ω

at x is called the Clarke tangent cone to Ω at x.

Definition 3.3.3. A vector v ∈ Rnc is said to be a tangent vector to the continuous

variables of the set Ω at the point x = (xc, xd) ∈ cl(Ω) if there exists a sequence {yk}

that converges to xc with (yk, x
d) ∈ Ω and a sequence of positive real numbers {λk}

for which v = limk λk(yk − xc). The set TCo
Ω (x) of all tangent vectors to Ω at x is

called the contingent cone to Ω at x.

Definition 3.3.4. The set Ω is said to be regular at x if TCl
Ω (x) = TCo

Ω (x).

The results of this section make use of a generalization [74] of the Clarke [30]

directional derivative, in which function evaluations are restricted to points in the

domain. Furthermore, the notions of generalized directional derivatives and gradient

are restricted to the subspace of continuous variables. The generalized directional

derivative of a locally Lipschitz function f at x = (xc, xd) ∈ Ω in the direction

v ∈ Rnc is defined by

f◦(x; v) := lim sup
y → xc, (y, xd) ∈ Ω

t ↓ 0, (y + tv, xd) ∈ Ω

f(y + tv, xd)− f(y, xd)

t
. (3.15)

Furthermore, it is shown in [11] that if TH
Ω (x) is not empty and v ∈ TCl

Ω (x), then

f◦(x; v) = lim
u→ v,

u ∈ THΩ (x)

f◦(x;u). (3.16)

Other notions regarding derivatives are generalized as follows. Denote by∇f(x) ∈

Rnc and ∂f(x) ⊆ Rnc , respectively, the gradient and generalized gradient of the func-
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tion f at x = (xc, xd) ∈ Ω with respect to the continuous variables xc while holding

the categorical variables xd constant. In particular, the generalized gradient of f at

x∗ [30] with respect to the continuous variables is defined by

∂f(x) :=
©
s ∈ Rnc : f◦(x; v) ≥ vTs for all v ∈ Rnc

ª
.

The function f is said to be strictly differentiable at x with respect to the

continuous variables if the generalized gradient of f with respect to the continuous

variables at x is a singleton; i.e., ∂f(x) = {∇f(x)}.

The final definition, which is adapted from the original MADS algorithm in

[11] for the mixed variable case, provides some terminology for stationarity in the

nonsmooth case.

Definition 3.3.5. Let f be Lipschitz near x∗ ∈ Ω. Then x∗ is said to be a Clarke,

or contingent, stationary point of f over Ω with respect to the continuous variables if

f◦(x∗; v) ≥ 0 for every direction v in the Clarke tangent cone to Ω at x∗, or contingent

cone to Ω at x∗, respectively.

In addition, x∗ is said to be a Clarke, or contingent, KKT stationary point of

f over Ω if −∇f(x∗) exists and belongs to the polar of the Clarke tangent cone to Ω

at x∗, or contingent cone to Ω at x∗, respectively.

If Ωc(xd) = Rnc or x∗c lies in the relative interior of Ωc(xd), then a stationary

point as described by Definition 3.3.5 meets the condition that f◦(x∗; v) ≥ 0 for all

v ∈ Rnc. This is equivalent to 0 ∈ ∂f(x∗).

Main convergence results for the MVMADS algorithm consist of four theorems,

all of which are generalizations of similar results from MADS [11] or mixed variable

pattern search [2,6,9]. The first result establishes a notion of directional stationarity

at certain limit points, and the second ensures local optimality with respect to the set

of discrete neighbors. The remaining two results establish Clarke-based stationarity

in a mixed variable sense.
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Theorem 3.3.6. Let ŵ be the limit point of a refining subsequence or the associ-

ated subsequence of extended poll endpoints, and let v be a refining direction in

the hypertangent cone TH
X (ŵ). If f is Lipschitz at ŵ with respect to the continuous

variables, then f◦(ŵ; (v, 0)) ≥ 0.

Proof. Let K be an indexing set of {wk}k∈K, a refining subsequence converging to

ŵ = (ŵc, ŵd). Without any loss of generality, assume that wk = (wc
k, ŵ

d) for all

k ∈ K. In accordance with Definition 3.2 in [11], let v = limk∈L
dk
kdkk ∈ TH

Ω (ŵ) be a

refining direction for ŵ, where dk ∈ Dk for all k ∈ L and L is some subset of K.

Because wk converges to ŵ and by the definition of the MADS poll set, ∆
m
k kdkk

is bounded above by ∆k
pmax{kd0k : d0 ∈ D} where D is a finite set of directions and

∆k
p converges to zero, it follows that ∆

m
k kdkk also converges to zero. Thus, it also

follows from Equation (3.15) that:

f◦(ŵ; v) = lim sup
y→ ŵc, (y,wd) ∈ Ω

t ↓ 0, (y + tu, wd) ∈ Ω

u→ v, u ∈ THΩ (ŵ)

f
¡
y + tu, ŵd

¢
− f(y, ŵd)

t

≥ lim sup

k ∈ L

f
³
wc
k +∆m

k kdkk dk
kdkk , ŵ

d
´
− f(wc

k, ŵ
d)

∆m
k kdkk

= lim sup

k ∈ L

f
¡
wk +∆m

k dk, ŵ
d
¢
− f(wk)

∆m
k kdkk

≥ 0.

The last inequality holds because (wk+∆
m
k dk, ŵ

d) ∈ Ω and f(wk+∆
m
k dk, ŵ

d) ≥ f(wk)

(since wk is a minimal frame center) for all sufficiently large k ∈ L.

The next result gives sufficient conditions under which x̂ is a local minimizer

with respect to its discrete neighbors.

Theorem 3.3.7. If f is lower semi-continuous at x̂ and upper semi-continuous at

ŷ ∈ N (x̂) with respect to the continuous variables, then f(x̂) ≤ f(ŷ).
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Proof. Since k ∈ K ensures that {xk}k∈K are minimal frame centers, it follows that

f(xk) ≤ f(yk) for all k ∈ K. By the assumptions of lower and upper semi-continuity

on f and the definitions of x̂ and ŷ, it also follows that f(x̂) ≤ limk∈K f(xk) ≤

limk∈K f(yk) = f(ŷ).

The next theorem lists conditions that ensure that x̂ satisfies certain stationary

conditions, under various smoothness requirements.

Theorem 3.3.8. Assume that TH
Ω (x̂) 6= ∅ and the set of refining directions is asymp-

totically dense in TH
Ω (x̂).

1. If f is Lipschitz near x̂ with respect to the continuous variables, then x̂ is a

Clarke stationary point of f on Ω with respect to the continuous variables.

2. If f is strictly differentiable at x̂ with respect to the continuous variables, then

x̂ is a Clarke KKT stationary point of f on Ω with respect to the continuous

variables.

Furthermore, if Ω is regular at x̂, then the following hold:

1. If f is Lipschitz near x̂ with respect to the continuous variables, then x̂ is a

contingent stationary point of f on Ω with respect to the continuous variables.

2. If f is strictly differentiable at x̂ with respect to the continuous variables, then

x̂ is a contingent KKT stationary point of f on Ω.

Proof. First, Rockafellar [124] showed that if the hypertangent cone is not empty at

x̂, then TCl
Ω (x̂) = cl(T

H
Ω (x̂)). Since the set S of refining directions for f at x̂ is a dense

subset of TH
Ω (x̂), S is also a dense subset of T

Cl
Ω (x̂). Thus, any vector v ∈ TCl

Ω (x̂) can

be expressed as the limit of directions in S, and the first result follows directly from

(3.16) and Theorem 3.3.6.

Strict differentiability ensures the existence of ∇f(x̂) and that ∇f(x̂)Tv =

f◦(x̂; v) for all v ∈ TCl
Ω (x̂). Since f◦(x̂; v) ≥ 0 for all v ∈ TCl

Ω (x̂), it follows that

(−∇f(x̂))Tv ≤ 0, and the second result follows from Definition 3.3.5. Furthermore,
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if Ω is regular at x̂, then by Definition 3.3.4, TCl
Ω (x̂) = TCo

Ω (x̂), and the final two

results follow directly from Definition 3.3.5.

The next result is similar to Theorem 3.3.8 but considers the limit of extended

poll endpoints ẑ instead of x̂.

Theorem 3.3.9. Assume that ŷ ∈ N (x̂), TH
Ω (ẑ) 6= ∅, and the set of refining directions

is asymptotically dense in TH
Ω (ẑ).

1. If f is Lipschitz near ẑ with respect to the continuous variables, then ẑ is a

Clarke stationary point of f on Ω with respect to the continuous variables.

2. If f is strictly differentiable at ẑ with respect to the continuous variables, then

ẑ is a Clarke KKT stationary point of f on Ω with respect to the continuous

variables.

Furthermore, if Ω is regular at ẑ, then the following hold:

1. If f is Lipschitz near ẑ with respect to the continuous variables, then ẑ is a

contingent stationary point of f on Ω with respect to the continuous variables.

2. If f is strictly differentiable at ẑ with respect to the continuous variables, then

ẑ is a contingent KKT stationary point of f on Ω.

Proof. The proof is identical to that of Theorem 3.3.8, but with ẑ replacing x̂.

3.3.2 Convergence of MV-MADS with Ranking and Selection (MVMADS-RS).

Convergence for mixed variable MADS for the stochastic case has not yet been

formally proven. Because of the similarities between MV-MADS and MGPS-RS

discussed in Section 3.1.3 and the rigorous convergence results that exist for MGPS-

RS, the following conjecture is made with the belief that a proof similar to that for

MGPS-RS would follow for MVMADS-RS.

Conjecture 3.3.10. Suppose the sequence of iterates generated by MVMADS-RS

converges to x̂ ∈ Ω. Then x̂ meets the first-order necessary conditions (in the forms

listed below) for optimality a.s.:
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• If f is Lipschitz near x̂, then x̂ is a Clarke stationary point of f on Ω.

• If f is strictly differentiable at x̂ and TH
Ω (x̂) 6= ∅, then x̂ is a Clarke KKT

stationary point of f over Ω.

• If f is strictly differentiable at x̂, Ω is regular at x̂, and TH
Ω (x̂) 6= ∅, then x̂ is a

contingent KKT stationary point of f over Ω.

3.3.3 Convergence Results for Multi-Objective Problem. Convergence results

for the multi-objective problem are now presented. First, it is shown that if the

subproblems converge to an optimal solution, that solution is also Pareto optimal.

Lemma 3.3.11. Given a feasible point x∗ ∈ Ω of the stochastic, multi-objective,

mixed-variable optimization problem defined in Equation (1.5), if x∗ is a global mini-

mizer of a convex combination of the J objectives, then x∗ is Pareto optimal.

Proof. Assume to the contrary that x∗ is not Pareto optimal. If x∗ is not Pareto

optimal, by Definition 1.1.3, there exists some x ∈ Ω such that Fk(x) ≤ Fk(x
∗)

for k = 1, 2, . . . , J and Fi (x) < Fi (x
∗) for some i ∈ {1, 2, . . . , J}. Thus, the

positive sum,
JP
i=1

ciFi(x) <
JP
i=1

ciFi(x
∗), which contradicts the assumption that x∗ =

argmin
x∈Ω

µ
JP
i=1

ciFi(x)

¶
. Therefore, x∗ is Pareto optimal.

3.3.3.1 Linearly Constrained Problems. Convergence results for SMO-

MADS depend entirely on the results for the sub-problems. The following assumptions

are made [139]:

1. All iterates Xk produced by the the MGPS-RS algorithm lie in a compact set.

2. The objective function f is continuously differentiable with respect to the con-

tinuous variables when the discrete variables are fixed.

3. For each set of discrete variables Xd, the corresponding set of directions Di =

GiZi includes tangent cone generators for every point in Ωc.

4. The rule for selecting directions Di
k conforms to Ω

c for some ε > 0.
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5. For each q = 1, 2, . . . , nC , the responses {Fqs}sqs=1 are independent, identically

and normally distributed random variables with mean f (Xq) and unknown

variance σ2q <∞, where σ2l 6= σ2q whenever l 6= q.

6. For the r-th R&S procedure with candidate set C = {Y1, Y2, . . . , YnC}, RS (C,αr, δr)

guarantees correctly selecting the best candidate Y[1] ∈ C with probability of at

least 1− αr whenever f
¡
Y[q]
¢
− f

¡
Y[1]
¢
≥ δr for any q ∈ {2, 3, . . . , nC}.

7. For all but a finite number of MGPS-RS iterations and sub-iterations, the best

solution Y[1] ∈ C is unique, i.e., f (Y [1]) 6= f
¡
Y[q]
¢
for all q ∈ {2, 3, . . . , nC}

where C = {Y1, Y2, . . . , YnC} ⊂Mk at iteration k.

Given a feasible point x∗ ∈ Ω of a stochastic, multi-objective, mixed-variable opti-

mization problem as defined in Equation (1.5), where the continuous variables in Ω

are restricted by bound and linear constraints, the following key result applies.

Theorem 3.3.12. The sequence of iterates generated by each subproblem of stochastic

multi-objective pattern search (SMOMADS) contains a limit point that meets the first-

order necessary conditions for Pareto optimality, almost surely (a.s.).

Proof. The SMOMADS algorithm generates each subproblem as a nonnegative com-

bination of the J objectives of the original problem, i.e., Z(x) =

µ
JP
i=1

ciFi(x)

¶
, ci ≥ 0.

Each subproblem is then solved using MGPS-RS. Results from Theorem 4.8 and Theo-

rem 4.13 [139] show that the sequence of iterates produced in the subproblem contains

a limit point x∗ satisfying first-order conditions for optimality a.s. By Lemma 3.3.11,

if x∗ is optimal, it is also Pareto optimal.

3.3.3.2 Nonlinearly Constrained Problems. The following assumptions

are made [5]:

1. All iterates Xk produced by the the MVMADS-RS algorithm lie in a compact

set.

2. The objective function f is continuously differentiable with respect to the con-

tinuous variables when the discrete variables are fixed.
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3. For each q = 1, 2, . . . , nC , the responses {Fqs}sqs=1 are independent, identically

and normally distributed random variables with mean f (Xq) and unknown

variance σ2q <∞, where σ2l 6= σ2q whenever l 6= q.

4. For the r-th R&S procedure with candidate set C = {Y1, Y2, . . . , YnC}, RS (C,αr, δr)

guarantees correctly selecting the best candidate Y[1] ∈ C with probability of at

least 1− αr whenever f
¡
Y[q]
¢
− f

¡
Y[1]
¢
≥ δr for any q ∈ {2, 3, . . . , nC}.

5. For all but a finite number of MVMADS-RS iterations and sub-iterations, the

best solution Y[1] ∈ C is unique, i.e., f (Y [1]) 6= f
¡
Y[q]
¢
for all q ∈ {2, 3, . . . , nC}

where C = {Y1, Y2, . . . , YnC} ⊂Mk at iteration k.

Theorem 3.3.13. Suppose the sequence of iterates generated by a subproblem of

SMOMADS solved using MVMADS-RS converges to x̂ ∈ Ω. Then x̂ meets the first-

order necessary conditions (in the forms listed) for optimality a.s.:

• If f is Lipschitz near x̂, then x̂ is a Clarke stationary point of f on Ω

• If f is strictly differentiable at x̂ and TH
Ω (x̂) 6= ∅, then x̂ is a Clarke KKT

stationary point of f over Ω.

• If f is strictly differentiable at x̂, Ω is regular at x̂, and TH
Ω (x̂) 6= ∅, then x̂ is a

contingent KKT stationary point of f over Ω.

Further, if x̂ is in fact optimal, it is also Pareto optimal.

Proof. The SMOMADS algorithm generates each subproblem as a nonnegative com-

bination of the J objectives of the original problem, i.e., Z(x) =

µ
JP
i=1

ciFi(x)

¶
, ci ≥ 0.

Each subproblem is then solved using MADS. Thus, by Conjecture 3.3.10, the limit

point x̂ satisfies first-order necessary conditions for optimality, i.e., is a stationary

point, a.s. Therefore, by Lemma 3.3.11, if x̂ is optimal, it is also Pareto optimal.

3.4 Summary

In this chapter, the elements of the SMOMADS algorithm–R&S, MGPS-RS,

MADS, and aspiration/reservation level analysis–have been described and the algo-
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rithm itself has been outlined and described. Additionally, it has been shown that

each subproblem of the SMOMADS algorithm converges almost surely to stationary

points appropriately defined in the mixed variable domain, and that if such points

are globally optimal, then they are also Pareto optimal. After the methodology

was developed and theoretical convergence properties determined, algorithmic imple-

mentations were developed for testing. These implementations are given in Chapter

IV.
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IV. Algorithmic Implementation

In this chapter, the details of the various SMOMADS algorithm implementations are

presented. The implementations can be categorized based on four central issues:

determining aspiration/reservation level pairings in the objective space (i.e., in the

master problem), type of stochastic solver, type of solution filter, and termination

criteria. These issues are discussed in Sections 4.1—4.4, respectively. The implemen-

tations are described in Section 4.5.

4.1 Objective Space Search Pattern

As discussed in Section 3.2.1.1, specific choices of aspiration and reservation

levels are used to combine the multiple objectives of the original problem into a single

objective subproblem, which generates a point on the approximate Pareto front in a

given region of interest. In generating an approximate Pareto front, it is important

that efficient points not be too clustered in the same region, so that the true Pareto

front can be more fully and accurately characterized. Principles of experimental

design were used in the objective space to accomplish this goal. Specifically, three

methods were chosen, and in each case, the levels of the design were chosen to be

specific predetermined values for the aspiration and reservation levels.

1. Full Factorial Design. The full factorial design (FFD) has as design points

every possible combination of preselected design variable values. Though full

factorial designs provide information about linear, interaction, and quadratic

effects (i.e., in characterizing the shape of the Pareto front), they become im-

practically large for relatively few numbers of design variables and levels because

the number of design variables grows twice as fast as the number of objective

functions.

2. Central Composite Design. The central composite design (CCD) is a five-

level variance-optimal design used to fit second order models. It is considered

by proponents of experimental design [104] to be quite useful for sequential

experimentation, in which lower cost screening experiments are first performed
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to determine regions where further scrutiny is required [104]. Information about

shape of the Pareto front can be determined with relatively few design points

[104].

3. Box-Behnken Design. The Box-Behnken design (BBD) was developed as a

three-level alternative to the CCD. It is a spherical design that provides good

coverage of the design space in general. However, because it is spherical, instead

of cuboidal, it should not be used if the decision maker is particularly concerned

with the extreme points of the given domain [25,104].

Though only these three methods were implemented in this research, other experi-

mental designs are available and may be of use. Additional insights about the master

problem (i.e., the Pareto front) may allow the user to more parsimoniously allocate

potentially costly objective function evaluations (or simulations). Further research

in this area is suggested in Section 6.2.3.

4.2 Stochastic Solvers

Once the objectives of the master problem are combined into a single objective,

the MGPS-RS and MVMADS-RS stochastic optimization algorithms, discussed in

Sections 3.1.2 and 3.2.1.4, respectively, were applied because of the their attractive

convergence properties and because they are useful on industrial problems in which

derivatives are not available (e.g. see [144], [17] or [4]). The actual implementation

makes use of the NOMADm [3] MATLABr software, which has been applied suc-

cessfully to several single-objective stochastic test problems [45] and a multi-echelon

repair system optimization application [144].

NOMADm was extended to include the multi-objective case in the following

way. Code for interactive specification of aspiration/reservation level analysis was

required to control the master problem. Since no suitable MATLAB code exists

for doing this, new code, called MOMADS (see Appendix A), was written, which

incorporates the NOMADm software as the single-objective stochastic subproblem
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solver as described in Section 3.2. A copy of this new code is included as Appendix

A.

4.3 Solution Filter

For deterministic optimization problems, the solutions to the subproblems of

the SMOMADS algorithm are guaranteed to be efficient, or non-dominated, points

(see Section 3.3.3). This is also true of stochastic optimization problems, but only in

the limit, i.e., if the subproblem is allowed an infinite number of iterations. However,

since an infinite number of iterations is not possible in practice, some non-efficient

solutions may enter the efficient set. For this reason, each point is checked for Pareto

dominance before entering the efficient set, and if it is dominated, it is “filtered” and

does not enter the efficient set.

4.4 Algorithm Termination Criteria

In SMOMADS, algorithmic termination must occur both in the subproblem

and in the master problem. Termination criteria for the subproblems is discussed in

Section 4.4.1 and termination criteria for the master problem is discussed in Section

4.4.2.

4.4.1 Terminating the Subproblems. Even if an algorithm is known to con-

verge, the reality of imprecision and roundoff error make it necessary to predeter-

mine stopping criteria. In pattern search methods, this is accomplished by stop-

ping the algorithm when the mesh size ∆m
k falls below a threshold value ∆T ; i.e.,

∆k ≤ ∆T [67,137]. This criterion has been used extensively in practice, and Dolan et

al. [44] showed that for problems without noise ∆m
k provides a measure of first-order

stationarity; i.e., k∇f (xk) k ≤ C∆m
k , where C > 0 is an unknown constant. Similar

termination criteria may be used for MADS.

In a stochastic environment, termination criteria are typically more complex.

Too small a value of ∆T may increase the required number of function evaluations
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required by the ranking and selection portion of the algorithm to an unacceptable

level, whereas, too large a value may induce premature termination. For MGPS-RS

applied to single objective problems two additional termination criteria are employed

[137]. The first is that the ratio between the response standard deviation S and the

indifference zone parameter δr exceeds some threshold; namely,

S

δr
≥
√
K, (4.1)

where K may be selected by the user, based on available sampling budget; larger

values of K allow larger budgeting thresholds [137]. This criterion is a measure of

signal-to-noise. It is a heuristic for signalling that a high response noise (compared

to the indifference zone parameter) is causing excessively large sampling requirements

[137]. The second criterion is that the significance level αr in the ranking and selection

procedure satisfy

αr ≤ αT ,

where αT is a threshold of error to ensure that the probability of correct selection

1 − αT from among the candidates is sufficiently high. This is intended to prevent

a sequence of erroneous selections from causing the step size to decrease to a small

value thereby prematurely terminating the algorithm.

4.4.2 Terminating the Master Problem. In Section 4.1 experimental designs

were developed to search the objective space. In those implementations, a fixed

number of design points are determined a priori and the algorithm terminates when

these experimental design points are exhausted; however, in some cases this may not

be the ideal method for terminating the master problem. For example, in the full

factorial design, the number of design points can be prohibitively large. If a metric

to determine the quality of the Pareto set existed, it could be used to terminate the

algorithm without running all the design points if the Pareto set was determined to

be “adequate”. Therefore, one area of future work is to apply the quality metrics
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introduced by Wu and Azarm [163] to assess the Pareto set.

Figure 4.1: Master problem algorithm with termination check (graphical)

Termination in the master problem was accomplished via the algorithm depicted

in Figure 4.1 and described in Figure 4.2. The approach is not ideal, as it requires

intuitive observation on the part of an experienced analyst with moderate insight

into the expected objective space; however, for the purpose of this initial study, it

does perform quite well. Additionally, in many real-world engineering problems,

extreme cases are not typically considered; e.g., an aircraft designed to have zero

reliability or excessively high cost. Furthermore, some information about the decision

maker’s region of interest is likely to exist and provide insight into whether to expend

(objective function evaluation) resources to fill gaps in regions of little or no interest

to the decision maker. So, though not theoretically ideal, this approach is usually

adequate in practice.

It has been suggested previously that the quality metrics, applied a posteriori

in this study, could also be applied after each successive design point. This would

provide insight into the quality of the Pareto set approximation and quantitative

termination criteria. However, this would only provide information about when to
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A Method For Determining When to Terminate the Master Problem

1. Choose initial SMOMADS implementation based on problem structure
(types of constraints, types and number of objectives, etc.).

2. Run the implementation chosen in step 1 and graph the results in the objec-
tive space. (For problems with more than three objectives, the objectives
can be graphed pairwise.)

3. Visually inspect the approximated Pareto front and consider the following:

• Do gaps appear?
• Is the spread adequate for the desired range of aspiration and reserva-
tion levels?

• Are desired “extreme solutions ” represented, i.e., those solutions close
in one objective to its component in the utopia point?

• Are solutions clustered?
4. If approximation is adequate, then keep current efficient set and run quality
metrics. Retain current Pareto set and stop.

5. Otherwise, determine region requiring further scrutiny, e.g., regions between
points A1 and R1 and between points A2 and R2 in Figure 4.3.

Figure 4.2: Master problem algorithm with termination check
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Figure 4.3: Examining missing regions of the Pareto front

terminate. If the set is determined to be inadequate, the metrics by themselves

would not indicate how to set the aspiration and reservation levels to improve the

approximation in successive runs. The analyst would still be needed to determine

appropriate settings.

4.5 SMOMADS Implementations

Seven instances of the SMOMADS algorithm, defined by the choices discussed in

Sections 4.1—4.4 were devised and tested. They are listed in Table 4.1, where columns

2-4 describe the choice that define the number listed in column 1.

4.6 Testing the Algorithm

In this chapter, implementation of the SMOMADS algorithm has been described

in detail. In particular, four central issues were addressed: search pattern in the
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Table 4.1: SMOMADS Implementations Tested
Number Solver Experimental Design Filter Test Problems Section
1 MGPS-RS Full Factorial No Viennet 4 5.1.1.1
2 MGPS-RS Full Factorial Yes Viennet 3 5.1.1.2

Poloni 5.1.1.3
Dias Γ1 5.1.2.1
Dias Γ2 5.1.2.2
Fonseca F1 5.1.2.3
Schaffer F3 5.1.2.4
DTLZ7 5.1.2.6

3 MGPS-RS Central Composite No Viennet 4 5.1.1.1
4 MGPS-RS Central Composite Yes Dias Γ1 5.1.2.1

Fonseca F1 5.1.2.3
Schaffer F3 5.1.2.4
DTLZ7 5.1.2.6

5 MGPS-RS Box-Behnken No Viennet 4 5.1.1.1
6 MVMADS-RS Full Factorial Yes Tamaki 5.1.1.4

Srinivas 5.1.2.5
7 MVMADS-RS Central Composite Yes Tamaki 5.1.1.4

Srinivas 5.1.2.5
Disk Brake 5.1.3.1

objective space (i.e., in the master problem), type of stochastic solver, termination

criteria, and whether or not a solution filter (as described in Section 3.2.1.5) was used.

The seven implementations shown in Table 4.1 were used to solve published multi-

objective test problems with known results and then applied to a multi-objective

design optimization problem. The test problems, application problem, and results

are given in Chapter V.
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V. Computation and Evaluation

The accuracy of the SMOMADS algorithm was verified by its use on a set of test prob-

lems with known solutions. These test problems were modified (via the MATLABr

rand function) to introduce random noise into each objective function to simulate the

algorithm’s use on a stochastic system. The problems (except the airfoil design prob-

lem) were solved in Matlab 7.2.0 on a 2.13 GHz Pentium(R)M processor with 1GB of

RAM. Initially, a prototype of the MOMADS code (see Appendix A) was verified by

its use on one test problem [149] before checking an entire set of problems. Results

of the initial test, which are also included in [150], are shown in Section 5.1.1.1.

Following positive initial results, additional test problems were identified target-

ing several characteristics: bi-objective, multi-objective, continuous-variable, mixed-

variable, discontinuous Pareto front. Specific test problems are listed in Table 5.1.

Results for each test problem are shown in Section 5.1 and associated quality metrics

are listed in Table 5.3 in Section 5.3.

Table 5.1: Published Problems Tested using SMOMADS

Type of Sequential # Test Results
Test Problem # Var # Obj Variables Experiment Points in Section
Viennet 4 2 3 Continuous No 4,209 5.1.1.1
Viennet 3 2 3 Continuous No 4,096 5.1.1.2
Poloni 2 2 Continuous Yes 10,272 5.1.1.3
Tamaki 3 3 Continuous Yes 145 5.1.1.4
Dias Γ1 30 2 Continuous Yes 697 5.1.2.1
Dias Γ2 30 2 Continuous No 625 5.1.2.2
Fonseca F1 2 2 Continuous Yes 10,036 5.1.2.3
Schaffer F3 1 2 Continuous Yes 11,250 5.1.2.4
Srinivas 2 2 Continuous Yes 697 5.1.2.5
DTLZ7 2 2 Continuous No 36 5.1.2.6

Disk Brake 4 2 Mixed Yes 108 5.1.3.1

The algorithm was then applied to an airfoil design optimization problem. This

problem is representative of real-world multi-objective aircraft design problems. (Also

see [35], [77], [90], and [82].) Additionally, objectives of engineering design optimiza-

tion problems are often either subject to measurement error or must be estimated
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with simulations. Examples of simulation used in aircraft design can be found

in [91], [81], [36], and [35]. Results of the application are shown in Section 5.2.

5.1 Test Results

5.1.1 Continuous Multi-Objective Test Problems.

5.1.1.1 Viennet 4. As a proof-of-concept, Implementation 1 of the

algorithm (see Section 4.5) was built and tested on a problem given by Viennet and

Marc [149]:

min F1(X1,X2) =
(X1 − 2)2

2
+
(X2 + 1)

2

13
+ 3

F2(X1,X2) =
(X1 +X2 − 3)2

175
+
(2X2 −X1)

2

17
− 13

F3(X1,X2) =
(3X1 − 2X2 + 4)

2

8
+
(X1 −X2 + 1)

2

27
+ 15

subject to

4X1 +X2 − 4 ≤ 0

−X1 − 1 ≤ 0

X1 −X2 − 2 ≤ 0

X1,X2 ∈ [−4,+4]2.

This test problem was modified by adding uniformly distributed random noise

between 0 and 1 to each objective function evaluation to simulate the algorithm’s

use on a stochastic system1. The algorithm was tested on the initial problem over a

range of aspiration and reservation levels using three different experimental designs:

CCD with 59 design points, BBD with 54 design points, and FFD with 3 objectives

set at 4 levels within the region of interest, resulting in 4,096 design points. Five

replications were used at each design point. Each run took less than a minute (with

500 function evaluations).

1This is true of all further test problems as well and thus will not be mentioned in each further
test problem.
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(a) Pareto Set for Deterministic Test Problem, Figure 7 in
[149]

(b) Initial Test Results for Test Problem with Added Noise using Full Factorial Design

Figure 5.1: Comparison of Initial Test Results to Published Solution
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Initial results are shown in Figure 5.1. The initial runs fall inside the pub-

lished Pareto set (see Figure 5.1(a)), implying that Stage 1 of the algorithm is indeed

converging to Pareto solutions. Because this problem contains 3 objective functions,

pairwise examinations of the experimental Pareto fronts are used. These appear to

approach a reasonable approximation to the actual pairwise Pareto fronts. However,

the effect of random noise appears to be more prominent in objective 2. This is ex-

pected because the random noise was not scaled and is much larger in comparison to

values of objective 2 than compared to those of objectives 1 and 3. In the remaining

test problems, noise for each objective was scaled to approximately one percent of

its maximum objective function value (i.e., value at the nadir point) to account for

differences in the relative sizes of the objective function values, so that each is affected

similarly by the noise.

In general, as the magnitude of the noise grows, the number of iterations re-

quired before the algorithm terminates may become prohibitively large. As discussed

in Section 4.4.1, one of the stopping criteria in the subproblems is the signal-to-noise

ratio squared (K in Equation (4.1)). Assuming a computational budget as a func-

tion of this value K, the sample variance should be less than Kδ2r , where δ
2
r is the

desired indifference zone parameter. Additionally, because the number of iterations

is necessarily finite, the filter as described in Section 3.2.1.5 was added to all further

implementations (Implementations 2, 4, 6, and 7 in Table 4.1) to prevent potentially

dominated points from entering the efficient set.
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5.1.1.2 Viennet 3 Test Problem. The Viennet 3 test problem [149] is

linearly constrained and multi-objective and is given by

min F1(x, y) = 0.5 (x
2 + y2) + sin (x2 + y2)

F2(x, y) =
(3x− 2y + 4)2

8
+
(x− y + 1)2

27
+ 15

F3(x, y) =
1

(x2 + y2 + 1)
− 1.1e(−x2−y2)

subject to

−3 ≤ x, y ≤ 3.

Graphical depictions of the objective functions can be seen in Figure 5.2. Using im-

plementation 2 (see Section 4.5), the SMOMADS algorithm found an approximation

to the Pareto optimal set and front, shown in Figures 5.3(c) and 5.3(d) respectively,

by varying the aspiration and reservation levels using a full factorial design with 3

objectives set at 4 levels, resulting in 4,096 design points. Because solutions returned

by the subproblem may be filtered and not enter the Pareto set, five replications were

used at each design point.

When compared to the published results from [148,149] shown in Figures 5.3(a)

and 5.3(b), it is clear that the SMOMADS algorithm was able to produce a good

approximation of the published solution. Although each subproblem replication was

relatively fast, the large number of design points associated with the full factorial

design led to several hours of computation. This time could be reduced by using a

central composite design to examine the entire space and then focus in areas where

gaps may exist in the approximation to the Pareto front. Additionally, test metrics,

defined in Section 3.2.1.6, were used to determine the quality of the Pareto set after

the run was complete. These values are shown in Table 5.3. However, because these

metrics are generally used to compare Pareto sets, it would be useful in determining

if the algorithm should terminate before the entire experimental design had been

executed if a desired quality in the Pareto set approximation or threshold value had
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Figure 5.2: Graphical Depiction of the Viennet 3 Test Problem
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(a) Pareto Optimal Set for Deterministic
Test Problem, Figure 6 in [149]

(b) Pareto Front for Deterministic Test Prob-
lem, Figure C.36 in [148]

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Variable 1

V
ar

ia
bl

e 
2

Viennet 3 Test Problem −− Experimental Pareto Optimal Set

(c) Experimental Pareto Optimal Set
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Figure 5.3: Comparison of Experimental Results to Published Solution for Viennet
3 Test Problem
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been obtained (see Section 4.4.2). Future research in this area is recommended in

Section 6.2.3.2.
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Figure 5.4: Graphical Depiction of the Poloni Test Problem

5.1.1.3 Poloni Test Problem. The Poloni test problem, introduced by

Carlo Poloni in 1995 [117], contains two nonlinear objectives and simple bounds on
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the variables. It is given by

min F (x, y) = (f1(x, y), f2(x, y))

subject to

−π ≤ x, y ≤ π,

where

f1(x, y) = 1 + (A1 −B1)
2 + (A2 −B2)

2

f2(x, y) = (x+ 3)
2 + (y + 1)2

A1 = 0.5 sin(1)− 2 cos(1) + sin(2)− 1.5 cos(2)

A2 = 1.5 sin(1)− cos(1) + 2 sin(2)− 0.5 cos(2)

B1 = 0.5 sin(x)− 2 cos(x) + sin(y)− 1.5 cos(y)

B2 = 1.5 sin(x)− cos(x) + 2 sin(y)− 0.5 cos(y),

and graphical depictions of the objective functions are shown in Figure 5.42. Im-

plementation 2 (see Section 4.1) of the SMOMADS algorithm was used to find the

approximations of the Pareto optimal set and Pareto front shown in Figures 5.5(c)

and 5.5(d), respectively. As with the Viennet 3 test problem, the objective space

was divided and a full factorial design used. In this case, however, Implementation 2

tended not to find the Pareto points that heavily favored one objective or the other.

That is, solutions found by the algorithm tended to lie in the “compromise area” of

the curve shown in Figure 5.5(d) (area near the middle of the Pareto front where

individual objectives are neither extremely high nor extremely low). After adjust-

ing the range of the aspiration and reservation levels, additional runs resulted in the

generation of new points on the lower right side of the curve.

The solution set was then compared to the one published in the doctoral dis-

sertation of Van Veldhuizen [148]. Van Veldhuizen’s approximations of the Pareto

2Note that the objective functions used here as a minimization problem are the negatives of the
of those used in the original maximization problem. To compare with published results, the results
in Figures 5.5(c) and 5.5(d) are converted to those of the original maximization problem.
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optimal set and Pareto front for the deterministic problem (i.e., without noise added),

which was generated by an evolutionary algorithm, are shown in Figures 5.5(a) and

5.5(b), respectively. As can be clearly seen from Figure 5.5(b), this Pareto set ap-

proximation contains dominated points. In contrast, the Pareto set approximation

found via SMOMADS contains few (if any) dominated points as shown in Figure

5.5(d). Though the Van Veldhuizen set contains more points in the approximation

and covers more of the objective space, it should be noted that the SMOMADS al-

gorithm was not run exhaustively. Additional aspiration-reservation level pairs can

be run in order to determine additional portions of the Pareto frontier. The limiting

factor is the number of design points in the master problem which can be evaluated.

Thus, as previously mentioned, efficient methods for searching the objective space can

be of paramount importance.

5.1.1.4 Tamaki Test Problem. The Tamaki test problem [148] contains

three linear objectives, one nonlinear constraint, and nonnegativity constraints on the

variables. Its formulation is given by

max F (x, y, z) = (f1(x, y, z), f2(x, y, z), f3(x, y, z))

subject to

x2 + y2 + z2 ≤ 1

x, y, z ≥ 0

where

f1(x, y, z) = x

f2(x, y, z) = y

f3(x, y, z) = z.

As shown in Figure 5.6(a), its feasible region is the nonnegative portion of a sphere.

Because the objective is to maximize each variable, the true Pareto front is the surface

of the sphere within the feasible region (see Figure 5.7(a)).
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(a) Pareto Optimal Set for Deterministic
Test Problem, Figure C.17 in [148]

(b) Pareto Front for Deterministic Test Prob-
lem, Figure C.18 in [148]
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Figure 5.5: Comparison of Experimental Results to Published Solution for Poloni
Test Problem
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Implementations 6 and 7 of the SMOMADS algorithm were used to find an

approximation of the Pareto optimal set/front shown in Figures 5.7(c) and 5.7(d).

As with previous test problems, the algorithm tended toward “compromise ” regions

of the objective space. However, this is due to the choice of experimental design in

the master problem, which can be changed to use a different implementation of the

algorithm, and is thus, not considered an algorithmic shortcoming.

5.1.2 Continuous Bi-Objective Test Problems.

5.1.2.1 Dias Γ1 Test Problem. The Dias Γ1 test problem is a bound

constrained bi-objective (one linear function, one nonlinear function) problem with

30 decision variables. Its formulation is given by

min F (X) = (f1(
−→
X ), f2(

−→
X ))

subject to

0 ≤ Xi ≤ 1, i = 1, 2, . . . , 30

where

f1(
−→
X ) = X1

f2(
−→
X ) =

∙
1 + 9

MP
i=2

µ
Xi

(M − 1)

¶¸⎡⎢⎢⎢⎣1−
vuuut f1(

−→
X )

1 + 9
MP
i=2

µ
Xi

(M − 1)

¶
⎤⎥⎥⎥⎦

−→
X = [Xi, . . . ,X30].

Implementation 2 of the SMOMADS algorithm was used to determine the approxima-

tion of the Pareto front (shown in Figure 5.8(b)), as follows. First, implementation 2

was run in the range between the utopia and nadir points in the objective space. The

graph of the Pareto front was observed and areas with gaps and under-representation

were determined. Further runs (using Implementation 4) were then focused on those

areas by setting the aspiration and reservation range to a small area around the miss-

ing regions. When compared to the published solution to the deterministic version
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Figure 5.6: Theoretical Solutions for the Tamaki Test Problem

(a) Pareto Optimal Set for Deterministic
Test Problem, Figure D.19 in [148]

(b) Pareto Front for Deterministic Test Prob-
lem, Figure D.20 in [148]
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Figure 5.7: Comparison of Experimental Results to Published Solution for Tamaki
Test Problem
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of the problem found in [42], the approximation determined by SMOMADS is quite

good, having nearly the same spread and fewer points that are actually dominated.

(a) Pareto Front for Deterministic Test Prob-
lem, Figure 2 in [42]
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Figure 5.8: Comparison of Experimental Results to Published Solution for Dias’
Γ1 Test Problem

5.1.2.2 Dias Γ2 Test Problem. The Diaz Γ2 problem is identical to

the Diaz Γ1 problem, except for a change in the second objective. It is given by

min F (X) = (f1(
−→
X ), f2(

−→
X ))

subject to

0 ≤ Xi ≤ 1, i = 1, 2, . . . , 30

where

f1(
−→
X ) = X1

f2(
−→
X ) =

∙
1 + 9

MP
i=2

µ
Xi

(M − 1)

¶¸⎡⎢⎢⎣1−
⎛⎜⎜⎝ f1(

−→
X )

1 + 9
MP
i=2

µ
Xi

(M − 1)

¶
⎞⎟⎟⎠
2⎤⎥⎥⎦

−→
X = [Xi, . . . , X30].
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(a) Pareto Front for Deterministic Test Prob-
lem, Figure 3 in [42]
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Figure 5.9: Comparison of Experimental Results to Published Solution for Dias’
Γ2 Test Problem

5.1.2.3 Fonseca F1 Test Problem. The Fonseca F1 test problem con-

tains two exponential objectives and two variables with upper and lower bounds.

Graphs of both objective functions are shown in Figures 5.10(a) and 5.10(b), and the

problem formulation is given by

min f1(X1, X2) = 1− exp (−(X1 − 1)2 − (X2 + 1)
2)

f2(X1, X2) = 1− exp (−(X1 + 1)
2 − (X2 − 1)2)

subject to

−2 ≤ X1 ≤ 2

−2 ≤ X2 ≤ 2.

The theoretical Pareto optimal set (as shown in Figure 5.11(a)) can be easily de-

termined to be the line between points (0,1) and (1,0) [79]. The corresponding

theoretical Pareto front is shown in Figure 5.11(b).

Implementations 2 and 4 of the SMOMADS algorithm were used to determine

the experimental Pareto optimal set and front as shown in Figures 5.11(c) and 5.11(d),

respectively. As shown in the graphs, the algorithm found a very good approximation

in the “compromise region” as well as the extreme solutions. Gaps do exist in the
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approximation that could be examined further via the master problem termination

algorithm outlined in Section 4.4.2.

5.1.2.4 Schaffer F3 Test Problem. The Schaffer F3 test problem con-

tains one quadratic objective function, one nonsmooth piecewise linear objective func-

tion, and one decision variable with simple bounds. The problem formulation is given

by

min F (X) = (f1(X), f2(X))

subject to

−8 ≤ X ≤ 8

where

f1(X) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−X,

−2 +X,

4−X,

−4 +X,

X ≤ 1

1 < X ≤ 3

3 < X ≤ 4

4 < X

f2(X) = (X − 5)2.

Graphical depictions of the objectives are shown in Figures 5.12(a) and 5.12(c). The

published Pareto optimal set is also shown in Figure 5.12(a). The true Pareto front

(derived from the published true Pareto set) is shown in Figure 5.12(b).

Implementations 2 and 4 were used to determine the experimental Pareto op-

timal set and front shown in Figures 5.12(c) and 5.12(d), respectively. As depicted

in the graphs, the experimental solution nearly perfectly matches the published the-

oretical solution.

5.1.2.5 Srinivas Test Problem. The Srinivas test problem contains two

nonlinear objective functions, two nonlinear constraints, and two decision variables
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Figure 5.10: Graphical Depiction of the Fonseca F1 Test Problem
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Figure 5.11: Comparison of Experimental Results to Published Solution for Fonseca
F1 Test Problem
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(a) Pareto Optimal Set for Deterministic
Test Problem, Figure 4 in [79]
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Figure 5.12: Comparison of Experimental Results to Published Solution for Schaffer
F3 Test Problem

with upper and lower bounds. Its formulation is given by

min f1(X1, X2) = 1− exp (−(X1 − 1)2 − (X2 + 1)
2)

f2(X1, X2) = 1− exp (−(X1 + 1)
2 − (X2 − 1)2)

subject to

X2
1 +X2

2 − 225 ≤ 0

X1 − 3X2 + 10 ≤ 0

−20 ≤ X1 ≤ 20

−20 ≤ X2 ≤ 20,
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and graphical depictions of the feasible region and objective functions are shown in

Figure 5.13. The Pareto optimal set and front, as published by Van Veldhuizen, are

shown in Figures 5.14(a) and 5.14(b), respectively [148].

Implementations 6 and 7 were used to determine the experimental Pareto op-

timal set and front shown in Figures 5.14(c) and 5.14(d), respectively. As depicted

in the graphs, the Pareto optimal set and front found via the SMOMADS algorithm

match quite well to the published solution. In fact, the published solution, found via

an evolutionary algorithm, clearly contains many dominated solutions, whereas the

experimental solution contains very few.
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Figure 5.13: Graphical Depictions of the Srinivas Test Problem
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(a) Pareto Optimal Set for Deterministic
Test Problem, Figure D.17 in [148]

(b) Pareto Front for Deterministic Test Prob-
lem, Figure D.18 in [148]
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Figure 5.14: Comparison of Experimental Results to Published Solution for Srinivas
Test Problem

5.1.2.6 DTLZ7 (2 Objective) Test Problem. The DTLZ7 test problem

can be found in [119] and [41]. It is bi-objective with one linear and one nonlinear

objective function and two decision variables with lower and upper bounds. The
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problem formulation is

min f1(X1,X2) = X1

f2(X1,X2) = (1 + 10X2)

Ã
1−

µ
X1

1 + 10X2

¶2
− X1 sin(8πX1)

1 + 10X2

!
subject to

0 ≤ X1,X2 ≤ 1.

The pubished Pareto optimal front, as determined via a particle swarm algorithm

[119], is shown in Figure 5.15(a). Implementations 2 and 4 were used to determine

the experimental solution shown in Figure 5.15(b). When compared to the published

solution, the experimental solution matches quite well.
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Figure 5.15: Comparison of Experimental Results to Published Solution for 2 Ob-
jective DTLZ7 Test Problem

5.1.3 Mixed Variable Bi-Objective Test Problems.

5.1.3.1 Disk Brake Design Test Problem. This mixed variable test

problem is found in [119] and is an engineering design problem for a disk brake. It

contains two nonlinear objective functions, two linear constraints, three continuous
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variables and one categorical variable, and is given by

max f1(X1,X2, X3, X4) = (4.9× 10−5)(X2
2 −X2

1)(X4 − 1)

f2(X1,X2, X3, X4) =
(9.82× 106)(X2

2 −X2
1)

X3X4(X3
2 −X3

1 )

subject to

(X2 −X1)− 20 ≥ 0

30− 2.5(X4 + 1) ≥ 0

0.4− X3

3.14(X2
2 −X2

1)
≥ 0

1− (2.22× 10
−3)X3(X

3
2 −X3

1)

(X2
2 −X2

1 )
≥ 0

(2.66× 10−2)X3X4(X
3
2 −X3

1 )

(X2
2 −X2

1)
− 900 ≥ 0

55 ≤ X1 ≤ 80

75 ≤ X2 ≤ 110

1000 ≤ X3 ≤ 3000

2 ≤ X4 ≤ 20

X4 ∈ N.

The lone categorical variable X4 represents the number of disks in the brake. Though

it can take on only 19 distinct values, meaning that exhaustive enumeration is not

prohibitively expensive, the point of this test problem was to exercise the mixed

variable logic in the solver. Implementation 7 of the SMOMADS algorithm was

used to determine the Pareto front shown in Figure 5.16(b). When compared to

the published solution (generated via a particle swarm algorithm) [119], the solution

generated by SMOMADS is nearly identical.

5.2 Engineering Design Optimization Application

After the algorithm successfully solved the published test problems, it was ap-

plied to a small airfoil engineering design optimization problem. Mathematically, the
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Figure 5.16: Comparison of Experimental Results to Published Solution for Disk
Brake Test Problem

problem is:

min
∆M,∆α

¡
E [cd] , σ

2 (cl) , σ
2 (cd) ,−E [cl]

¢
(5.12a)

where

cl = f1(X1, X2,X3)

cd = f2(X1, X2,X3)
(5.12b)

subject to

E [cl] ≥ 0.612

E [cd] ≤ 0.0172

|E [cm] | ≤ 0.0888

σ2 (cl) ≤ 0.0546

σ2 (cd) ≤ 0.0061

σ2 (cm) ≤ 0.00827

0 ≤ X1 < 10 0 ≤ X2 < 10 12 ≤ X3 < 100.

(5.12c)

This problem was adapted from one originally solved by Ciprian et al. [29] using multi-

criteria decision making methods and game theory. The decision variables X1 and X2

represent the first and second digits in the NACA3 airfoil number and X3 represents

3NACA is the National Advisory Committee for Aeronautics, established by an act of the United
States Congress on 3 March 1915 [7]. NACA ceased to exist on 1 October 1958 and was replaced by
the National Aeronautics and Space Administration (NASA) [108]; however, the NACA numbering
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the third and fourth digits. Following the standard NACA airfoil numbering system,

this implies that X1, X2, and X3 represent, respectively, the maximum airfoil camber

(in percentage of its chord, the distance between the leading and trailing edges of an

airfoil measured in the direction of normal airflow [156]), distance of maximum camber

from the airfoil leading edge (in tens of percents of its chord), and the maximum

thickness of the airfoil (in percent of its chord) [157]. As shown in Equation (5.12a),

the objectives are to minimize the expected value and variance of the drag coefficient

and the variance of the lift coefficient and to maximize4 the expected value of the lift

coefficient and the lift and drag coefficients are assumed to be black box functions of

the decision variables. In the original problem, the coefficients of lift and drag are

determined using the Navier-Stokes version of the flow solver MUFLO and AIRFOIL

(using different shape coordinates as decision variables). Neither of these solvers

were available open source, so the problem was modified slightly so that it could be

used with the PABLO solver (which stands for Potential Flow around Airfoils with

Boundary Layer Coupled One-way), a pedagogical low-speed airfoil analysis program

written in MATLABr [152]. The changes made to the design problem are as follows:

1. The original problem used two 10-degree Bèzier curves to represent the airfoil

shape and used their coordinates as decision variables. The modified problem

used the NACA airfoil numbering system to represent the airfoil shape and used

the first, second, and third/fourth digits as decision variables.

2. The flow solver in the original problem used Mach number as an input. The

solver in the modified version uses Reynolds number as an input. However,

since the Reynolds number is directly proportional to velocity by

Re =

ρυ2s
L
μυs
L2

=
ρυsL

μ
=

υsL

v
(5.13)

system continues to be used.
4The expected value of the lift coefficient is maximized by minimizing its negative.
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where

υs - mean fluid velocity

L - characteristic length

μ - (absolute) dynamic fluid viscosity

ρ - fluid density

v - kinematic fluid viscosity: v = μ/ρ

and

M =
V

a
=

V√
γRT

(5.14)

where

M - Mach number

V - velocity

γ - ratio of specific heats (for air γ = 1.4)

R - specific gas constant

T - temperature,

and for a fixed temperature and pressure, velocity can be determined from Mach

number via Equation (5.14) [7,158]. Unfortunately, the temperature, pressure,

and characteristic length of the airfoil are not given in [29]; thus, standard

temperature and pressure at sea level and the characteristic length of ten feet

are assumed.

3. The original problem was near the transonic range, the range of speeds just

below and above the speed of sound, approximately Mach 0.8 — 1.2. The flow

solver in the modified problem is subsonic, and the speeds in original problem

(mach 0.73±0.05) approach the limits of a low-speed solver, so the speed range

in the modified problem was reduced to mach 0.53± 0.05.

98



In both the original and modified problems, the objectives are to be minimized

over a range of Mach numbers (Reynolds numbers) and angle of attack (2 ± 0.5) in

order to find a robust design. (However, in the modified problem using the low-speed

solver, the objectives do not vary across the range of Mach numbers, so the variation

is due only to angle of attack.) The decision space is constrained such that the new

airfoils can perform no worse than the RAE2822 airfoil5 and the minimum airfoil

thickness is 12% of the chord. (The performance values for the RAE2822 airfoil were

taken from [29] and are given in Equation (5.12c)). This problem has been sufficiently

modified such that direct comparison to the published solution is no longer germane

and is not shown.

Implementation 7 of the SMOMADS algorithm was used to determine the ex-

perimental Pareto front, shown in Figure 5.17. In Figures 5.17(a) and 5.17(b), the

feasible region is enclosed (below and to the left) by the solid lines.

Because the problem had to be modified to run inside the MATLABr environ-

ment, comparisons to the published solution would be inappropriate. However, some

observations regarding the experimental solution follow. The SMOMADS algorithm

is able to find many non-dominated solutions, but each run took a significant amount

of time (approximately 3 days for 100 design points). This underscores the necessity

of a parsimonious experimental design in the master problem and highlights the need

for follow-on research in this area.

As with the test problems, the SMOMADS algorithm tended to find solutions in

the “compromise” area of the Pareto front. This particular type of problem highlights

the notion that such solutions are particular useful (see Section 4.4.2). For example,

a Pareto optimal solution corresponding to high lift, but also high drag, may result

in an aircraft that uses excessive amounts of fuel. Similarly, one with very low drag,

but little lift, could result in an aircraft that cannot carry much weight. Thus,

the solutions found by the algorithm would be those more likely to be favored by a

5RAE stands for the Royal Aircraft Establishment and is the British version of the United States’
NACA airfoil system [7].
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decision maker.
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5.3 Quality Metrics

The Pareto set quality metrics (Pareto spread, number of distinct choices, and

cluster) discussed in Section 3.2.1.6 were calculated for all the test problems. The

parameters of the test problems necessary for the calculations are given in Table

5.2 and the values of the test metrics are given in Table 5.3. Since, as previously

mentioned, these metrics could be useful in determining when to terminate the master

problem, the experimental Pareto set for each test problem was reduced by 90% by

randomly selecting 10% of the Pareto optimal points and then reevaluating the metrics

in order to demonstrate how they might be used with threshold values. The values

of the metrics on the reduced sets are shown in Table 5.4, where it is evident that the

test metrics do indeed improve as the number of points in the Pareto set increases.

Table 5.2: Parameters Required for the Quality Metrics
Problem fb1 fb2 fb3 f b4 fg1 fg2 fg3 fg4 np .1× np

Viennet 3 10 18 0.2 1 15 -0.2 3467 346

Viennet 4 7.5 -11 26 3.3 13 15 58990 5899

Poloni 30 50 0 0 35178 3417

Tamaki 0 0 0 -1 -1 -1 404 41

Dias Γ1 1 1 0 0 772 77

Dias Γ2 1.1 1.1 0 0 330 33

Fonseca F1 1.01 1.01 0 0 1066 107

Schaffer F3 1 16 -1 0 1958 196

Srinivas 250 10 0 -250 996 97

DTLZ7 0.85 1.4 0 -0.6 377 38

Disk Brake 2.75 33 0 0 289 29

Airfoil 0.0115 0.004 0.00025 -0.612 0 0 0 -2.5 231 24

Because the sets were reduced in a random fashion, the quality of the sets of the

different test problems were not reduced equally, meaning that improvement is more

significant in some cases than in others. This also provides some insight into the

utility of the metrics. If the quality metrics are tracked after each design point, they

could, in fact, be used as stopping criteria, because relatively few (quality) points can

produce good values in the test metrics. For example, in the Viennet 3 and Viennet

4 test problems, values for Pareto spread corresponding to the the reduced Pareto
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optimal set are nearly as high as those for the full set. If this had been the first

points generated, the algorithm could have been terminated after only 10% of the

experimental design had been evaluated. Further research in this area is suggested

in Section 6.2.3.2.

Table 5.3: Quality Metrics Applied to Test Problems
Problem OS(P ) OS1(P ) OS2(P ) OS3(P ) OS4(P ) NDCμ(P ) CLμ(P )

Viennet 3 0.4496 0.9072 0.7010 0.7070 96 36.1

Viennet 4 0.5524 0.9797 0.5750 0.9806 173 344.8

Poloni 0.2054 0.3660 0.5613 53 666.7

Tamaki 0.5304 0.8287 0.8535 0.7499 344 1.2

Dias Γ1 0.6987 0.8013 0.8719 125 6.2

Dias Γ2 0.8619 0.9182 0.9388 61 5.4

Fonseca F1 0.9942 0.9975 0.9968 150 7.1

Schaffer F3 0.9933 0.9936 0.9997 98 20.0

Srinivas 0.7614 0.8929 0.8528 155 6.4

DTLZ7 0.8668 0.9675 0.8959 76 5.0

Disk Brake 0.3830 0.8294 0.4618 87 3.3

Airfoil 0.1528 0.4415 0.4462 0.8911 0.8703 43 5.4

Table 5.4: Quality Metrics Applied to Reduced Solution Sets of the Test Problems

Problem OS(P ) OS1(P ) OS2(P ) OS3(P ) OS4(P ) NDCμ(P ) CLμ(P )

Viennet 3 0.4296 0.8977 0.6790 0.7048 42 8.7

Viennet 4 0.4245 0.9303 0.5496 0.8302 136 43.3

Poloni 0.0164 0.2925 0.0559 36 98.0

Tamaki 0.0211 0.3105 0.3025 0.2249 40 1.0

Dias Γ1 0.6908 0.7951 0.8689 54 1.4

Dias Γ2 0.8132 0.8831 0.9209 19 1.7

Fonseca F1 0.9927 0.9975 0.9952 57 1.9

Schaffer F3 0.9796 0.9803 0.9992 69 2.8

Srinivas 0.5817 0.7668 0.7586 46 2.1

DTLZ7 0.6557 0.9396 0.6978 20 1.9

Disk Brake 0.3830 0.8294 0.4618 26 1.1

Airfoil 0.0175 0.3671 0.4462 0.8897 0.1203 14 1.7

5.4 Efficiency of the Algorithm

The computational efficiency of SMOMADS is dependent on several factors,

which are determined by choices made during implementation of the algorithm. Dis-
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cussion of these factors and observations from the test problems follow.

5.4.1 Experimental Design. In the master problem, the choice of exper-

imental design directly affects the computation time required by algorithm. For

example, in the first test problem (Viennet 4), the FFD was chosen, resulting in 4,096

individual subproblems, with 5 replications. Computational time for each replication

took considerably less than a minute, but total computational time was several hours.

For problems with expensive or lengthy function evaluations, such a design would be

prohibitively expensive. This was highlighted by subsequent test problems. For

example, the FFD chosen for the Poloni test problem resulted in 10,000 individual

subproblems with 5 replications. The computational time required was over 72 hours.

If a CCD had been chosen instead, the number of subproblems required would have

been reduced by 3 orders of magnitude; therefore, this design was used in later test

problems in a sequential experimentation scheme (see Section 4.1). The number of

test points for each problem and whether each problem was solved using sequential

experimentation are shown in columns 6 and 5 of Table 5.1, respectively. Every

test point was replicated 5 times, except for the first CCD (36 test points) of the disk

brake problem that was replicated 15 times. Further research regarding experimental

designs is suggested in Section 6.2.3.

5.4.2 Termination Criteria. The overall computational time required by

SMOMADS is heavily dependent on the computational efficiency of the subprob-

lems6. The computation time required by the subproblems depends on algorithmic

parameters of the two individual solvers. These parameters were set to suggested

default values [3], with the exception of the maximum number of iterations allowed in

the subproblem, which was set to 500. Limiting the number of iterations increased

the computational efficiency by stopping subproblems that might be converging at

a slower rate and thereby substantially increasing the overall computation time. In

6The number of objective function evaluations required by the solvers is not captured with current
code and could not be reported. Modifications to the code are suggested in Section 6.2.4.1
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addition to directly impacting computation time, limiting iterations also indirectly

impacts computational efficiency as described in the next section.

5.4.3 Solution Quality and Filtered Points. In the limit, the subproblems

always converge to Pareto stationary points; however, as discussed in Section 3.2.1.5,

with a finite number of iterations, the solver may terminate at a dominated point.

Thus, if a maximum number of iterations is stipulated, it increases the likelihood

of premature termination and directly affects solution quality in the subproblems.

Dominated points are filtered and not allowed to enter the efficient set, so the final

solution quality is not affected; however, computational effort is wasted for each point

that must be discarded. Therefore, the maximum number of iterations must be set

low enough that dubious subproblems are abandoned, yet not so low that subproblems

are squandered. Unfortunately, this can be problem-specific. For example, in the

Viennet 3 test problem, 83% of points were filtered, but in the Poloni test problem,

only 30% of solutions did not enter the efficient set.

5.5 Summary

In this chapter, the accuracy of the SMOMADS algorithm was verified by its

use on a set of test problems with known solutions and an airfoil design problem.

The algorithm generally produces numerical results quite similar to those in the lit-

erature. In the design problem, it was able to generate many Pareto optimal points.

Additionally, factors affecting computational efficiency were discussed and applicable

examples from the test problems were illustrated.
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VI. Conclusions and Recommendations

A research approach extending stochastic and multi-objective solution methods to

one applicable to optimization problems having both characteristics has been pre-

sented. The new method further extends the generalized pattern search methods that

previously existed for single-objective optimization of mixed-variable systems having

stochastic responses to the multi-objective case. Such problems are typically encoun-

tered when one desires to optimize systems with multiple, often competing, objectives

that do not have a closed form representation and must be estimated via simulation.

A two-stage method was presented that combines generalized pattern search/rank-

ing and selection (GPS-R&S) developed for single-objective stochastic problems and

Mixed Variable Mesh Adaptive Direct Search (MVMADS) with three multi-objective

methods: interactive techniques for the specification of aspiration/reservation levels,

scalarization functions, and multi-objective ranking and selection.

Convergence analysis was conducted showing that in each subproblem, a subse-

quence of iterates converges with probability one to a stationary point appropriately

defined in the mixed-variable domain, and that if that solution is also optimal, then

it is Pareto optimal. Algorithmic implementations of the first stage have been de-

veloped and computational experiments conducted on standard multi-objective test

problems with random noise added to the objective function evaluations to simulate

measurement error or the use of a simulation. Finally, the algorithm was applied

to an aeronautical engineering design optimization problem. The original contribu-

tions of this dissertation research are summarized in Section 6.1 and future research

directions are proposed in Section 6.2.

6.1 Contributions

This research provided the following original contributions to the field of Oper-

ations Research.
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6.1.1 General Solution Method for Multi-Objective Optimization of Mixed Vari-

able Systems having Stochastic Responses. The primary contribution of this re-

search is the development of the first provably convergent algorithm for solving multi-

objective, stochastic optimization problems over a mixed-variable domain. Though

other methods exist for problems having one or two of these characteristics, no existing

method was applicable to those problems exhibiting all three.

6.1.2 Convergence Analysis. The second contribution of this research is

a rigorous convergence analysis of the algorithm. The new algorithm was shown

to converge almost surely to stationary points appropriately defined in the mixed-

variable domain. It was further shown that if such points are optimal, they are

also Pareto optimal. In proving convergence, it was necessary to fill a void in the

existing convergence analysis for MADS, i.e., to show that a mixed-variable version

of MADS converges almost surely to stationary points appropriately defined in the

mixed variable case.

6.1.3 Algorithmic Implementation Developed and Testing. The third contri-

bution of this research was the development of seven implementations of the algorithm

that were tested on multi-objective optimization problems from the literature. These

problems had random noise introduced into their objective function evaluations to

simulate random responses. Even in the presence of noise, the algorithm was shown

to produce results comparable to the published solutions that were generated with

deterministic objective function evaluations.

6.1.4 Application Heuristic Stopping Criteria. Heuristic stopping criteria

were developed for the portion of the algorithm referred to as the master problem.

An iterative process was presented (see Section 4.4.2) for determining when an ade-

quate approximation to the Pareto set had been found. Metrics were suggested to

substantiate the quality of the set and for termination.
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6.2 Future Research

6.2.1 Convergence Results for MVMADS-RS. Convergence results for the

stochastic, multi-objective, nonlinearly constrained case have not been rigorously

proven and depend on Conjecture 3.3.10. A formal proof of this conjecture is re-

quired for completeness.

6.2.2 Stage 2. As discussed in Section 3.2.2, some efficient points may not

be found via interactive specification of aspiration/reservation levels and scalarization

functions of the type discussed in Section 3.1.4. Thus, a second (optional) stage was

suggested for those cases in which missing points may pose a particular problem. In

this stage, a discrete mesh (similar to that used for MGPS-RS and MADS) around

the current efficient points would be determined and then a multi-objective ranking

and selection algorithm would be used to check for new efficient points on the mesh.

In this research, the algorithm performed so well on the test problems without the

second stage, that adding it was not necessary; however, future research is suggested

for those cases in which it may be required.

6.2.3 Search Methods in the Objective Space. Though the proposed method

is applicable to problems with any number of objectives, in practice, the dimension-

ality in the experimental design limits searching in the objective space. Thus, an

efficient manner of searching the objective space is needed, and the following possible

research areas are suggested.

6.2.3.1 Response Surface Methodology. As suggested in Section 4.1,

the problems studied here can be thought of as approximating a response surface

(the Pareto front) with aspiration and reservation levels as the decision variables

using experimental design methods. In this research, only three experimental designs

were studied: full factorial design, central composite design, and Box-Behnken design.

Other methods and principles from experimental design may be as useful in efficiently

approximating the Pareto front. Thus a more in depth study of these methods is
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suggested.

6.2.3.2 Quality Metrics for the Pareto Set. Currently, the experimen-

tal design in the master problem of the solution algorithm is run exhaustively. In

some cases though, an adequate Pareto front approximation may be obtained before

the entire design is completed. Thus, if the quality of the experimental Pareto set

could be evaluated at various points and the search terminated at a predetermined

threshold, the efficiency of the search method could be improved.

6.2.3.3 Improved Filter. The filter applied in this research used a

simple comparison of objective function values to determine if a point was dominated.

Because of the stochastic nature of the problem, this could potentially lead to some

dominated points entering the set or non-dominated points being unduly excluded.

The experimental results in Section 5.1 indicated that error in the efficient set when

compared to known results was insignificant; however, it is possible that in other

optimization problems, such a filter would not be adequate. One suggestion is to

add a multi-objective ranking and selection [85] algorithm, in place of the simple

comparison currently in the filter to determine if a point is dominated (see Sections

3.2.2.1 and 3.1.5).

Additionally, the filter only determines if a point is dominated before it enters

the efficient set. Once in the set, it is never again considered. It is possible that an

erroneous point could enter the efficient set early in the algorithm’s run. Although the

experimental results in this study did not indicate significant problems with solution

accuracy, it is recommended that the filter also determine if an entering efficient point

dominates any existing efficient solutions.

6.2.3.4 Master Problem Termination Criteria. Though heuristic stop-

ping criteria have been developed here (see Section 4.4.2), they could be refined based

on response surface methodology (Section 6.2.3) and quality metrics (Section 6.2.3.2).

With an astute experimental design, a more thrifty search of the objective space could
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be conducted. Furthermore, with insightful quality metrics applied after each design

point is evaluated, the search could be stopped when a desired quality level is reached,

rather than exhaustively evaluating the experimental design points. With both ele-

ments, the search could be conducted as parsimoniously as possible.

6.2.3.5 Automated Decision Agent. Section 3.2.1.1 discusses the ex-

perimental design built to investigate a range of values of aspiration and reservation

levels. If, instead, an automated decision agent (see Sections 2.1.1.2 and 2.3.1) could

be developed, it may provide better insight to the decision maker. In fact, even the

decision strategies of a decision maker could be investigated, e.g., conservative versus

daring decision strategies.

6.2.4 Software Changes.

6.2.4.1 Code to Capture Metrics. Though observations have been

made about solution quality and computational efficiency, because existing solvers

were used, some metrics were not captured and could not be reported. The following

changes to the software are suggested.

1. As discussed in Section 4.4.1, in MGPS-RS, the difference between the response

standard deviation S and the indifference zone parameter is used in the ter-

mination criteria for the algorithm; however, this data is not reported at the

end of the subproblem. (Response standard deviation in this case is that of

the scalarized objective function, not the individual objective functions.) It is

suggested that the response standard deviation at the end of each subproblem

be captured. Though not a direct measure of the variance in each objective

function, it does provide insight into the variability of the approximate Pareto

set.

2. Though computational efficiency of the algorithm was discussed in Section 5.4,

some metrics typically associated with computational efficiency were not cap-
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tured by the existing software and could not be reported. Such measures would

be helpful in further assessing the algorithm’s potential use on computationally

expensive problems. Specifically, it is suggested that the software be modified

to capture CPU (central processing unit) time used by each subproblem, overall

CPU time, number of iterations in each subproblem, and number of objective

function evaluations.

6.2.4.2 User-Friendly Software. This research provided the algorith-

mic methodology for a two-stage solution process and prototype code for specific

implementations of the algorithm. This code was integrated with the batch mode of

NOMADm, but was not integrated with the graphical user interface (GUI). In future

research, it is suggested that the code controlling the aspiration/reservation level anal-

ysis be integrated with NOMADm into a single graphical user interface. Additionally,

this integrated code should then be compiled using MATLABr’s VB.netrs builder

toolbox so that it can be executed by users without having to have a MATLABr

license.

110



Appendix A. Code–MOMADS for the Dias Γ2 Problem

1.1 File name: DiasGamma2RuntheBatchFile.m

SetUpProblem

global numobjectives;

global aspire;

global reservation;

global utopia;

global nadir;

global objfunctionstruc;

global xvals;

%Define problem files

MyProb.problemPath = fullfile(matlabroot,...

’work’,’examples’,’theprob’,’ContBOIcky’,’DiasGamma2’);

MyProb.F = ’DiasGamma2’; % functions file

MyProb.O = ’DiasGamma2_Omega’; % linear constraints file

MyProb.X = ’DiasGamma2_X’; % closed constraints file

MyProb.I = ’DiasGamma2_x0’; % initial points file

MyProb.N = ’DiasGamma2_N’; % discrete neighbor file

MyProb.P = ’DiasGamma2_Param’; % parameter file

MyProb.C = ’DiasGamma2_Cache.mat’; % previously created Cache file

MyProb.S = ’DiasGamma2_Session.mat’; % previously created Session file

MyProb.H = ’DiasGamma2_History.txt’; % iteration history text file

MyProb.D = ’DiasGamma2_Debug.txt’; % debug log file

MyProb.fType = ’M’; % type of functions file {M,F,C}

MyProb.nc = 0; % number of nonlinear constraints

%other variables

numobjectives = 2; utopia(1) = 0; utopia(2) = 0; nadir(1) = 1;
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nadir(2) = 10;

%range checked

arange=[.1 .8; .05 1.];

rrange=[.81 1.2; 1.1 8];

numaspire=5; numreservation=5; numreplications=5;

%Types of designs ’fullfactorial’, ’centralcomposite’, ’boxbehnken’

%You need the statistics toolbox for this to work

%Need file generatepoints.m in your workpath

TestPoints = generatepoints(’fullfactorial’,numaspire,

numreservation, arange, rrange, numobjectives); MyResult =[];

objfunctionstruc = []; bogus=0; xvals = []; for

Mym=1:size(TestPoints,1)

for Myn=1:numobjectives

aspire(Myn) = TestPoints(Mym,Myn);

reservation(Myn) = TestPoints(Mym,numobjectives+Myn);

end

if (mod(Mym,50)==0)

Mym

end

for l = 1:numreplications

temp = size(MyResult,1)+1;

%This is where the MADS or GPS solver is called.

%Need the MOmads.m file installed in the workpath.

%For MOmads, you need the

%SetUpProblem.m and nomad.m files also.

temp1 = MOmads(MyProb,Options);
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temp2=temp1.param;

if temp == 1

AddYes = 1;

else

AddYes = CheckPareto(temp2, MyResult, numobjectives);

end

if AddYes == 1

MyResult(temp,1).x = temp1.x;

MyResult(temp,1).f = temp1.f;

MyResult(temp,1).c = temp1.c;

MyResult(temp,1).aspire=aspire;

MyResult(temp,1).reservation=reservation;

MyResult(temp,1).Objective=temp2;

else

bogus = bogus+1;

end

end

end

%This section was for graphing the output. Uncomment as needed.

% for m=1:size(MyResult,1)

% MyX(m)=MyResult(m,1).x(1);

% MyY(m)=MyResult(m,1).x(2);

% end

% scatter(MyX,MyY,3,’filled’)

% clear MyX MyY;

% figure
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% hold

% for m=1:size(MyResult,1)

% MyX(m)=MyResult(m,1).Objective(1);

% MyY(m)=MyResult(m,1).Objective(2);

% end

% scatter(MyX,MyY,3,’filled’)

% clear MyX MyY;

% figure

% hold

% clear MyX MyY;

% figure

% hold

% for m=1:size(MyResult,1)

% MyX(m)=MyResult(m,1).Objective(2);

% MyY(m)=MyResult(m,1).Objective(3);

% scatter(MyX,MyY,3,’filled’)

% end

% clear MyX MyY;
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1.2 File name: DiasGamma2.m

function [fx,cx] = DiasGamma2(x);

global numobjectives;

global aspire;

global reservation;

global utopia;

global nadir;

global objfunctionstruc;

global xvals;

%f(1) and f(2) are the objective functions.

f(1)=x(1)+.01*rand; g1=sum(x)-x(1); g2=1+(9/29)*g1;

f(2)=g2*(1-(f(1)/g2)^2)+0.01*rand;

%This saves the original function values to the variable param.

%Used in the batch file for the filter.

Param.param=f;

%set epsilon and alpha and beta and w

epsilon = 5;

%This code puts the objectives into the achievement

% scalarization function.

for n1 = 1:numobjectives

w(n1)= 1/(reservation(n1)-aspire(n1));

if (aspire(n1) ~= utopia(n1))

alpha(n1)=0.1*(reservation(n1)-aspire(n1))/(aspire(n1)-utopia(n1));

else

alpha(n1)=0.1*(reservation(n1)-aspire(n1))/(0.0000001);
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end if (aspire(n1) ~= nadir(n1))

beta(n1)=-10*(reservation(n1)-aspire(n1))/(aspire(n1)-nadir(n1));

else

beta(n1)=-10*(reservation(n1)-aspire(n1))/(0.0000001);

end end for n2 = 1:numobjectives

if f(n2) < aspire(n2)

u(n2)=alpha(n2)*w(n2)*(aspire(n2)-f(n2))+1;

elseif f(n2)<=reservation(n2)

u(n2)=w(n2)*(aspire(n2)-f(n2))+1;

else

u(n2)=beta(n2)*w(n2)*(reservation(n2)-f(n2));

end

end temp = [u(1) u(2)];

%This is the combined objective function.

fx = -(min(temp)+epsilon*sum(temp));

%This would be used if you had non-linear constraints.

cx=[];

%Don’t delete this line or the param variable above won’t save.

setappdata(0,’PARAM’,Param);

return
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1.3 File name: DiasGamma2 Omega.m

%*********************************************************************

%canoeDW_Omega: User-supplied funct. for defining Omega, based on p.

%*********************************************************************

function [A,l,u,plist] = DiasGamma2_Omega(n); A = eye(n); l = [0; 0;

0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; ...

0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0];

u = [1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;...

1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1];

return

1.4 File name: DiasGamma2 x0

function iterate = DiasGamma2_x0;

%This sets the initial points.

iterate(1).x = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; ...

0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0];

iterate(1).p = {}; return;
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1.5 File name: SetupProblem.m

%*********************************************

% DO NOT MODIFY THIS SECTION

%*********************************************

% Set Options to their default values

clc clear variables Defaults = mads_defaults(’Truth’); Options =

Defaults.Options;

%*************************************************

%Options MAKE CHANGES HERE FOR SEARCH TYPE, ETC.

%*************************************************

% Specify Choices for SEARCH

Options.nSearches = 2;

Options.Search(1).type = ’LHS’;% For choices, see mads_defaults

Options.Search(1).nIter = 1; % Number of iter for Search #1

Options.Search(1).nPoints = 8; % Number of poll or sample points

Options.Search(1).sfile = ’’; % filename must include full path

Options.Search(1).file = ’’; % filename must include full path

Options.Search(1).local = 0; % flag to turn on trust region

Options.Search(1).merit = 0; % flag to penalize clustered data

Options.Search(1).param = 0; % flag to constr. surr. on param

Options.Search(1).recal = ...

strncmp(Options.Search(1).type(max(1,end-1):end), ...

’NW’,2) || strncmp(Options.Search(1).type(max(1,end-3):end),’DACE’,4);

Options.Search(2).type = ’None’; % For choices, see mads_defaults

Options.Search(2).nIter = 10; % Number of iter for Search #2

Options.Search(2).nPoints = 1; % Number of poll or sample points

Options.Search(2).sfile = ’regpoly0’;% filename must include full path
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Options.Search(2).file = ’’; % filename must include full path

Options.Search(2).local = 0; % flag to turn on trust region

Options.Search(2).merit = 0; % flag to penalize clustered data

Options.Search(2).recal = ...

strncmp(Options.Search(1).type(max(1,end-1):end), ’NW’,2) || ...

strncmp(Options.Search(1).type(max(1,end-3):end), ’DACE’,4);

Options.SurOptimizer = ’mads’; Options.mvp1Surrogate = 1;

Options.dace(2).reg = ’regpoly0’; Options.dace(2).corr =

’correxp’; Options.dace(2).theta = 1; Options.dace(2).lower

= 0.01; Options.dace(2).upper = 1000; Options.dace(2).isotropic

= 0;

% Specify Choices for POLL

Options.pollStrategy = ’MADS_2n’; % For choices, see mads_defaults

Options.pollOrder = ’Consecutive’; % For choices, see defaults

Options.pollCenter = 0; % Poll around n-th filter point

Options.pollComplete = 0; % Flag for complete polling

Options.NPollComplete = 0; % Flag for complete neigh. polling

Options.EPollComplete = 0; % Flag for complete extend polling

% Specify Termination Criteria

Options.Term.delta = 1e-4; % minimum mesh size

Options.Term.nIter = Inf; % maximum number of iterations

Options.Term.nFunc = 50000; % maximum number of function evals

Options.Term.time = Inf; % maximum CPU time

Options.Term.nFails = Inf; % max number of consec. Poll fails

% Choices for Mesh Control
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Options.delta0 = 1; % initial mesh size

Options.deltaMax = 1; % bound on how coarse mesh can get

Options.meshRefine = 0.5; % mesh refinement factor

Options.meshCoarsen = 2.0; % mesh coarsening factor

% Choices for Filter management (for problems with nl constraints)

Options.hmin = 1e-8; % minimum infeasible point h-value

Options.hmax = 1.0; % maximum h-value of a filter point

% Choices for EXTENDED POLL (for MVP problems)

Options.ePollTriggerF = 0.01; % f-value Extended Poll trigger

Options.ePollTriggerH = 0.01; % h-value Extended Poll trigger

% MADS flag parameter values

Options.loadCache = 0; % load pre-existing Cache file

Options.countCache = 0; % count Cache points as func. calls

Options.runStochastic = 1; % runs problem as a stoch. problem

Options.scale = 2; % scale directions using log base

Options.useFilter = 1; % filter(0=none,1=multi-pt,2=2-pt)

Options.degeneracyScheme = ’random’; % scheme for degenerate constraints

Options.removeRedundancy = 1; % discard redundant lin. constr.

Options.computeGrad = 0; % compute gradient, if available

Options.saveHistory = 0; % saves MADS perform. to text file

Options.plotHistory = 0; % plot MADS performance

Options.plotFilter = 0; % plot the filter real-time

Options.plotColor = ’k’; % color of history plot

Options.debug = 0; % turn on status mess for debugging

Options.showFilterPlot = 0; % turn off the filter plot
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Options.Sur.Term.delta = 0.01; % surrogate minimum mesh size

% Set up figure handles for real-time plots

if (Options.plotHistory == 2)

figure;

Options.hplothandle = gca;

end
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1.6 File name: generatepoints.m

function [TestPoints] = generatepoints(designofexperiments,

numasp,...

numres, arange, rrange, numobj)

switch lower(designofexperiments)

case ’fullfactorial’

gen = [];

for ar=1:2

for n=1:numobj

if ar==1

gen = [gen numasp];

else

gen = [gen numres];

end

end

end

myfact=fullfact(gen);

testpt=myfact;

for m=1:size(myfact,1)

for l=1:size(myfact,2)

if l<=numobj

testpt(m,l)=arange(l,1)+(myfact(m,l)-1)*...

((arange(l,2)-arange(l,1))/(numasp-1));

else

testpt(m,l)=rrange(l-numobj,1)+(myfact(m,l)-1)...

*((rrange(l-numobj,2)-...

rrange(l-numobj,1))/(numres-1));

end

end
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end

TestPoints=testpt;

case ’centralcomposite’

myfact=ccdesign(2*numobj);

testpt=myfact;

for m=1:size(myfact,1)

for l=1:size(myfact,2)

if l<=numobj

testpt(m,l)=0.5*((arange(l,2)+arange(l,1))+...

(myfact(m,l)*(arange(l,2)-arange(l,1))));

else

testpt(m,l)=0.5*((rrange(l-numobj,2)+...

rrange(l-numobj,1))+(myfact(m,l)*...

(rrange(l-numobj,2)-rrange(l-numobj,1))));

end

end

end

TestPoints=testpt;

case ’boxbehnken’

myfact=bbdesign(2*numobj);

testpt=myfact;

for m=1:size(myfact,1)

for l=1:size(myfact,2)

if l<=numobj

testpt(m,l)=0.5*((arange(l,2)+arange(l,1))+...

(myfact(m,l)*(arange(l,2)-arange(l,1))));

else

testpt(m,l)=0.5*((rrange(l-numobj,2)+...
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rrange(l-numobj,1))+(myfact(m,l)*...

(rrange(l-numobj,2)-rrange(l-numobj,1))));

end

end

end

TestPoints=testpt;

case ’singlepoint’

testpt=[];

for n=1:2*numobj

if n<=numobj

testpt=[testpt arange(n,1)];

else

testpt=[testpt rrange(n,1)];

end

end

TestPoints=testpt;

otherwise

disp(’I need a valid type of design of experiments.’)

end
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1.7 File name: CheckPareto.m

function YesNo = CheckPareto(functionvalues, MyResult,

numobjectives) thisone=[];

for m=1:numobjectives

thisone = [thisone functionvalues(1,m)];

end for n=1:size(MyResult,1)

thatone = [];

for m=1:numobjectives

thatone = [thatone MyResult(n,1).Objective(m)];

end

MyCheck=sum(sum(thatone < thisone));

if MyCheck == numobjectives

YesNo=0;

break

end

YesNo=1;

end

1.8 File name: MOmads.m

function [BestF,BestI,RunStats,RunSet] = MOmads(MyProb,Options)

%MADS_BATCH Sets up and runs the MADS algorithm without a GUI.

%

problemPath = MyProb.problemPath;

Problem.File.F = MyProb.F; % functions file

Problem.File.O = MyProb.O; % linear constraints file

Problem.File.X = MyProb.X; % closed constraints file

Problem.File.I = MyProb.I; % initial points file
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Problem.File.N = MyProb.N; % discrete neighbor file (MVP only)

Problem.File.P = MyProb.P; % parameter file

Problem.File.C = MyProb.C; % previously created Cache file

Problem.File.S = MyProb.S; % previously created Session file

Problem.File.H = MyProb.H; % iteration history text file

Problem.File.D = MyProb.D; % debug log file

Problem.fType = MyProb.fType; % type of functions file {M,F,C}

Problem.nc = MyProb.nc; % number of nonlinear constraints

Problem.nameCache = ’CACHE’; Problem.typeProblem = ’TRUTH’;

%

%*********************************************************************

% DO NOT MODIFY AFTER THIS POINT

%**********************************************************************

if (Problem.nc == 0)

Options.plotFilter = 0;

end if (Options.plotFilter) && (Options.showFilterPlot == 1)

figure;

Options.fplothandle = gca;

end

% Set the path, and load any user-provided problem parameters

cwd = pwd; %create variable to remember current directory

cd(problemPath); %change focus to problem directory

if (exist(Problem.File.P,’file’) == 2)

Problem.Param = feval(Problem.File.P);

setappdata(0,’PARAM’,Problem.Param);

end
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% Get the initial iterates and call the optimizer

if isfield(Problem,’Param’) && isfield(Problem.Param,’iterate0’)

iterate0 = Problem.Param.iterate0;

else

iterate0 = feval(Problem.File.I);

end

[BestF,BestI,RunStats,RunSet] = mads(Problem,iterate0,Options);

cd(cwd); %change focus back to original directory

return
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A research approach is presented for solving stochastic, multi-objective optimization problems. First, the class of mesh
adaptive direct search (MADS) algorithms for nonlinearly constrained optimization is extended to mixed variable
problems. The resulting algorithm, MV-MADS, is then extended to stochastic problems (MVMADS-RS), via a ranking
and selection procedure. Finally, a two-stage method is developed that combines the generalized pattern search/ranking
and selection (MGPS-RS) algorithms for single-objective, mixed variable, stochastic problems with a multi-objective
approach that makes use of interactive techniques for the specification of aspiration and reservation levels, scalarization
functions, and multi-objective ranking and selection. A convergence analysis for the general class of algorithms
establishes almost sure convergence of an iteration subsequence to stationary points appropriately defined in the
mixed-variable domain. Seven specific instances of the new algorithm are implemented and tested on 11 multi-objective
test problems from the literature and an engineering design problem.

multi-objective optimization, stochastic optimization, simulation-based optimization, mixed variable programming,
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